[USACO 12DEC]Running Away From the Barn
Description
It's milking time at Farmer John's farm, but the cows have all run away! Farmer John needs to round them all up, and needs your help in the search.
FJ's farm is a series of N (1 <= N <= 200,000) pastures numbered 1...N connected by N - 1 bidirectional paths. The barn is located at pasture 1, and it is possible to reach any pasture from the barn.
FJ's cows were in their pastures this morning, but who knows where they ran to by now. FJ does know that the cows only run away from the barn, and they are too lazy to run a distance of more than L. For every pasture, FJ wants to know how many different pastures cows starting in that pasture could have ended up in.
Note: 64-bit integers (int64 in Pascal, long long in C/C++ and long in Java) are needed to store the distance values.
给出以1号点为根的一棵有根树,问每个点的子树中与它距离小于等于l的点有多少个。
Input
Line 1: 2 integers, N and L (1 <= N <= 200,000, 1 <= L <= 10^18)
- Lines 2..N: The ith line contains two integers p_i and l_i. p_i (1 <= p_i < i) is the first pasture on the shortest path between pasture i and the barn, and l_i (1 <= l_i <= 10^12) is the length of that path.
Output
- Lines 1..N: One number per line, the number on line i is the number pastures that can be reached from pasture i by taking roads that lead strictly farther away from the barn (pasture 1) whose total length does not exceed L.
Sample Input
- 4 5
- 1 4
- 2 3
- 1 5
Sample Output
- 3
- 2
- 1
- 1
Hint
Cows from pasture 1 can hide at pastures 1, 2, and 4.
Cows from pasture 2 can hide at pastures 2 and 3.
Pasture 3 and 4 are as far from the barn as possible, and the cows can hide there.
题解
简要来说,左偏树
具体思想是:先$Dfs$求出根节点到各个节点的距离,再按逆$Dfs$时间戳顺序进行操作(为了使得处理的当前节点的所有子节点均被处理过,至于为何不正向,就不解释了)
建大根堆,每次做完合并操作后,将不可行的边从堆中弹出(即堆顶所表示的点到当前点的距离$>L$(同时以操作顺序为前提的条件下必有“相距距离=两点到根节点的距离差”))
另一个需要解决的问题就是如何求解,我们可以按逆$Dfs$序模拟一个回溯过程:将所以$pop$掉的值和其子节点的值累加,再相减即可。
- #include<cmath>
- #include<queue>
- #include<stack>
- #include<ctime>
- #include<cstdio>
- #include<string>
- #include<cstdlib>
- #include<iostream>
- #include<algorithm>
- using namespace std;
- const long long N=;
- struct tt
- {
- long long cost,next,to;
- }edge[*N+];//保存边的信息
- long long path[N+],top;
- struct node
- {
- long long key,dist;
- node *l,*r;
- long long ldist() {return l ? l->dist:-;}
- long long rdist() {return r ? r->dist:-;}
- }T[N+],*root[N+];//T[i]表示节点i的相关信息;root[i]表示序号为i的节点所在堆的根的地址
- long long n,l,a,b;
- long long remain[N+],tail,Rank[N+];//remain[]表示逆Dfs顺序,tail表示remain[]的大小;Rank[]表示Bfs序
- long long popnum[N+],cnt[N+];//popnum[i]保存在i节点时,弹出元素的数量 cnt[i]表示以i为根,其子树节点数量(不含根节点)
- void Add(long long x,long long y,long long cost);
- void Dfs(long long x);
- node* Merge(node* a,node* b);
- int main()
- {
- scanf("%lld%lld",&n,&l);
- for (long long i=;i<=n;i++)
- {
- scanf("%lld%lld",&a,&b);
- Add(a,i,b);
- Add(i,a,b);
- }//连双向边,正向用于Dfs用,逆向用于求解用
- Rank[]=;
- Dfs();
- for (long long i=;i<=tail;i++)
- {
- for (long long j=path[remain[i]];j;j=edge[j].next)
- {
- if (Rank[remain[i]]==Rank[edge[j].to]+)//找到前驱节点
- {
- root[edge[j].to]=Merge(root[remain[i]],root[edge[j].to]);//将当前节点构成的堆并入前驱节点
- while(root[edge[j].to]->key-T[edge[j].to].key>l)//弹出
- {
- popnum[edge[j].to]++;
- root[edge[j].to]=Merge(root[edge[j].to]->l,root[edge[j].to]->r);
- }
- }
- }
- }
- for (long long i=;i<=tail;i++) //对最终答案数据的处理
- {
- for (long long j=path[remain[i]];j;j=edge[j].next)
- {
- if (Rank[remain[i]]==Rank[edge[j].to]+)
- {
- cnt[edge[j].to]+=cnt[remain[i]]+;
- popnum[edge[j].to]+=popnum[remain[i]];
- }
- }
- }
- for (long long i=;i<=n;i++) printf("%lld\n",cnt[i]+-popnum[i]);
- return ;
- }
- void Add(long long x,long long y,long long cost)
- {
- edge[++top].to=y;
- edge[top].cost=cost;
- edge[top].next=path[x];
- path[x]=top;
- }
- void Dfs(long long x)
- {
- root[x]=x+T;
- for (long long i=path[x];i;i=edge[i].next) if (!Rank[edge[i].to])
- {
- Rank[edge[i].to]=Rank[x]+;
- T[edge[i].to].key=T[x].key+edge[i].cost;//key保存的是根节点到该点的距离
- Dfs(edge[i].to);
- }
- remain[++tail]=x;
- }
- node* Merge(node* a,node* b)
- {
- if (!a||!b) return a ? a:b;
- if (a->key<b->key) swap(a,b);
- a->r=Merge(a->r,b);
- if (a->ldist()<a->rdist()) swap(a->l,a->r);
- a->dist=a->rdist()+;
- return a;
- }
[USACO 12DEC]Running Away From the Barn的更多相关文章
- BZOJ 3011: [Usaco2012 Dec]Running Away From the Barn( dfs序 + 主席树 )
子树操作, dfs序即可.然后计算<=L就直接在可持久化线段树上查询 -------------------------------------------------------------- ...
- BZOJ_3011_[Usaco2012 Dec]Running Away From the Barn _可并堆
BZOJ_3011_[Usaco2012 Dec]Running Away From the Barn _可并堆 Description 给出以1号点为根的一棵有根树,问每个点的子树中与它距离小于l的 ...
- 【BZOJ3011】[Usaco2012 Dec]Running Away From the Barn 可并堆
[BZOJ3011][Usaco2012 Dec]Running Away From the Barn Description It's milking time at Farmer John's f ...
- USACO Running Away From the Barn /// 可并堆 左偏树维护大顶堆
题目大意: 给出以1号点为根的一棵有根树,问每个点的子树中与它距离小于等于m的点有多少个 左偏树 https://blog.csdn.net/pengwill97/article/details/82 ...
- [Usaco2012 Dec]Running Away From the Barn
题目描述 给出以1号点为根的一棵有根树,问每个点的子树中与它距离小于等于l的点有多少个. 输入格式 Line 1: 2 integers, N and L (1 <= N <= 200,0 ...
- [BZOJ3011][Usaco2012 Dec]Running Away From the Barn
题意 给出一棵以1为根节点树,求每个节点的子树中到该节点距离<=l的节点的个数 题解 方法1:倍增+差分数组 首先可以很容易的转化问题,考虑每个节点对哪些节点有贡献 即每次对于一个节点,找到其第 ...
- USACO 2008 Running(贝茜的晨练)
[题解] 动态规划,dp[i][j]表示第i分钟疲劳度为j的最长距离. [代码] #include <iostream> #include <cstdlib> #include ...
- 洛谷P1353 USACO 跑步 Running
题目 一道入门的dp,首先要先看懂题目要求. 容易得出状态\(dp[i][j]\)定义为i时间疲劳度为j所得到的最大距离 有两个坑点,首先疲劳到0仍然可以继续疲劳. 有第一个方程: \(dp[i][0 ...
- bzoj3011 [Usaco2012 Dec]Running Away From the Barn 左偏树
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=3011 题解 复习一下左偏树板子. 看完题目就知道是左偏树了. 结果这个板子还调了好久. 大概已 ...
随机推荐
- 2017-2018-1 20155215 第五周 mybash的实现
题目要求 使用fork,exec,wait实现mybash 写出伪代码,产品代码和测试代码 发表知识理解,实现过程和问题解决的博客(包含代码托管链接) 学习fork,exec,wait fork ma ...
- Beta冲刺Day4
项目进展 李明皇 今天解决的进度 因服务器端未完成登录态维护,故无法进行前后端联动. 明天安排 前后端联动调试 林翔 今天解决的进度 因上课和实验室事务未完成登录态维护 明天安排 完成登录态维护 孙敏 ...
- 03-移动端开发教程-CSS3新特性(下)
1. CSS3动画 1.1 过渡的缺点 transition的优点在于简单易用,但是它有几个很大的局限. transition需要事件触发,所以没法在网页加载时自动发生. transition是一次性 ...
- .Net Core MongoDB 简单操作。
一:MongoDB 简单操作类.这里引用了MongoDB.Driver. using MongoDB.Bson; using MongoDB.Driver; using System; using S ...
- dede观看总结自己总结
知识点一:{dede:arclist channelid="18" addfields="language,pfz" limit="0,5" ...
- C语言使用vs2013进行编辑
由于vs2013是微软开发的产品所以在windows平台下无限兼容windows所有虽然比较大,但是还是比较值得 但是在运行C程序的遇到问题就是控制台一闪而过通过ctrl+F5执行也是不管用: #in ...
- 前端基础之html-Day12
1.web服务本质 import socket def main(): sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.bi ...
- Leetcode:Two Sum
原题:https://leetcode.com/problems/two-sum/ 尝试了两种方法: 方法一: var twoSum = function(nums, target) { for(va ...
- 新概念英语(1-109)A Good Idea
Lesson 109 A good idea 好主意 Listen to the tape then answer this question. What does Jane have with he ...
- spring-oauth-server实践:客户端和服务端环境搭建
客户端:http://localhost:8080/spring-oauth-client/index.jsp 服务端:http://localhost:8080/spring-oauth-serve ...