题目描述

Johny and Margaret are playing "pebbles".

Initially there is a certain number of pebbles on a table, grouped in n piles.

The piles are next to each other, forming a single row.

The arrangement of stones satisfies an additional property that each pile consists of at least as many pebbles as the one to the left (with the obvious exception of the leftmost pile).

The players alternately remove any number of pebbles from a single pile of their choice.

They have to take care, though, not to make any pile smaller than the one left to it.

In other words, the piles have to satisfy the initial property after the move as well.

When one of the players cannot make a move (i.e. before his move there are no more pebbles on the table), he loses.

Johny always starts, to compensate for Margaret's mastery in this game.

In fact Margaret is so good that she always makes the best move, and wins the game whenever she has a chance.

Therefore Johny asks your help - he would like to know if he stands a chance of beating Margaret with a particular initial arrangement.

Write a programme that determines answers to Johny's inquiries.

有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数。两人轮流操作每次操作可以从一堆石子中移走任意多石子,但是要保证操作后仍然满足初始时的条件谁没有石子可移时输掉游戏。问先手是否必胜。

输入输出格式

输入格式:

In the first line of the standard input there is a single integer u (1<=u<=10) denoting the number of initial pebble arrangements to analyse.

The following 2u lines contain descriptions of these arrangements; each one takes exactly two lines.

The first line of each description contains a single integer n,1<=n<=1000 - the number of piles.

The second line of description holds non-negative integers separated by single spaces and denoting the numbers of pebbles in successive piles, left to right.

These numbers satisfy the following inequality a1<=a2...<=an.

The total number of pebbles in any arrangement does not exceed 1000.

多组输入,第一行一个整数u代表数据组数(1<=u<=10)

接下来共2*u行,每两行代表一组数据:

第一行只有一个整数n(1<=n<=1000),表示石子堆数;

第二行有n个整数用空格隔开,第i个整数ai表示第i堆的石子个数,保证a1<=a2<=a3...<=an。

对于每组数据,保证石子总数不超过10000。

输出格式:

Precisely  lines should be printed out on the standard output.

The -th of these lines (for ) should hold the word TAK (yes in Polish), if Johny can win starting with the -th initial arrangement given in the input, or the word NIE (no in Polish), if Johny is bound to lose that game, assuming optimal play of Margaret.

输出u行,如果第i组数据先手必胜,输出“TAK”,否则输出“NIE”。

输入输出样例

输入样例#1: 复制

2
2
2 2
3
1 2 4
输出样例#1: 复制

NIE
TAK
设c[i]为可以取得石子数,显然c[i]=a[i]-a[i-1]
当取了x个时,c[i]-=x,c[i+1]+=x
相当于i给x给i+1
可以看做石子数为c[i],做反向阶梯博弈
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int a[],ans,n;
int main()
{int T,i;
cin>>T;
while (T--)
{
cin>>n;
ans=;
for (i=;i<=n;i++)
{
scanf("%d",&a[i]);
}
for (i=n;i>=;i-=)
ans^=(a[i]-a[i-]);
if (ans) cout<<"TAK"<<endl;
else cout<<"NIE"<<endl;
}
}

[POI2009]KAM-Pebbles的更多相关文章

  1. BZOJ 1115: [POI2009]石子游戏Kam

    1115: [POI2009]石子游戏Kam Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 883  Solved: 545[Submit][Stat ...

  2. 【BZOJ】【1115】【POI2009】石子游戏KAM

    博弈论 这个题……一看就觉得很捉急啊= =肿么办? 灵光一现:差分一下~ 那么我们看一下差分以后,从第 i 堆中拿走 k 个石子变成了:a[i]-=k; a[i+1]+=k; 嗯这就转化成了阶梯博弈! ...

  3. bzoj 1115: [POI2009]石子游戏Kam -- 博弈论

    1115: [POI2009]石子游戏Kam Time Limit: 10 Sec  Memory Limit: 162 MB Description 有N堆石子,除了第一堆外,每堆石子个数都不少于前 ...

  4. 【BZOJ1115】[POI2009]石子游戏Kam 阶梯博弈

    [BZOJ1115][POI2009]石子游戏Kam Description 有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数.两人轮流操作每次操作可以从一堆石子中移走任意多石子,但是要 ...

  5. 【BZOJ】1115: [POI2009]石子游戏Kam

    http://www.lydsy.com/JudgeOnline/problem.php?id=1115 题意:n堆石子,个数是从左到右单增.每一次可以从任意堆取出任意石子,但要保持单增这个性质.问先 ...

  6. [BZOJ 1115] [POI2009] 石子游戏Kam 【阶梯博弈】

    题目链接:BZOJ - 1115 题目分析 首先看一下阶梯博弈: 阶梯博弈是指:初始有 n 堆石子,每次可以从任意的第 i 堆拿若干石子放到第 i - 1 堆.最终不能操作的人失败. 解法:将奇数位的 ...

  7. bzoj1115: [POI2009]石子游戏Kam

    Description 有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数.两人轮流操作每次操作可以从一堆石子中移走任意多石子,但是要保证操作后仍然满足初始时的条件谁没有石子可移时输掉游戏 ...

  8. BZOJ1115:[POI2009]石子游戏Kam (博弈论)

    挺水的 听说是阶梯nim和,就去看了一下,然后就会了= = 观察题目,发现拿第i堆棋子k个造成的影响就是第i+1堆棋子能多拿k个 可以把模型转化为,有n堆石子,每次从某一堆拿一个石子,放在下一堆中,不 ...

  9. BZOJ 1115: [POI2009]石子游戏Kam [阶梯NIM]

    传送门 有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数.两人轮流操作每次操作可以从一堆石子中移走任意多石子,但是要保证操作后仍然满足初始时的条件谁没有石子可移时输掉游戏.问先手是否必胜 ...

  10. BZOJ.1115.[POI2009]石子游戏Kam(阶梯博弈)

    BZOJ 洛谷 \(Description\) 有\(n\)堆石子.除了第一堆外,每堆石子个数都不少于前一堆的石子个数.两人轮流操作,每次可以从一堆石子中拿掉任意多的石子,但要保证操作后仍然满足初始时 ...

随机推荐

  1. CountDownLatch 源码解析—— countDown()

    上一篇文章从源码层面说了一下CountDownLatch 中 await() 的原理.这篇文章说一下countDown() . public void countDown() { //CountDow ...

  2. Maven安装配置【WIN10】

    环境 WIN10 Maven 3.5.3 下载 下载地址:https://maven.apache.org/download.cgi 安装配置 选择好路径后一路 next 默认,安装完成. 环境变量设 ...

  3. 函数式编程之foldLeftViaFoldRight

    问题来自 Scala 函数式编程 一书的习题, 让我很困扰, 感觉函数式编程有点神学的感觉.后面看懂之后, 又觉得函数式编程所提供的高阶抽象是多么的强大. 这个问题让我发呆了好久, 现在把自己形成的想 ...

  4. vue 保留两位小数 不能直接用toFixed(2) ?

    用vue做项目的时候多多少少都会遇到这个问题 刚开始我是用toFixed()这个方法来写的  效果是有的 但是控制台一直是红红的围绕着我 突然想到 vue和jquery混搭 的 问题 于是乎 看了一下 ...

  5. LeetCode & Q414-Third Maximum Number-Easy

    Array Math Description: Given a non-empty array of integers, return the third maximum number in this ...

  6. 验证码进阶(TensorFlow--基于卷积神经网络的验证码识别)

    本人的第一个深度学习实战项目,参考了网络上诸多牛人的代码,在此谢过,因时间久已,不记出处,就不一一列出,罪过罪过. 我的数据集是我用脚本在网页上扒的,标签是用之前写的验证码识别方法打的.大概用了400 ...

  7. C#之Socket通信

    0.虽然之前在项目中也有用过Socket,但始终不是自己搭建的,所以对Server,Clinet端以及心跳,断线重连总没有很深入的理解,现在自己搭建了一遍加深一下理解. 服务端使用WPF界面,客户端使 ...

  8. proxymysql的安装与应用

    具体的资料我们可以查看官方的文档:https://github.com/sysown/proxysql/wiki/ProxySQL-Configuration 推荐下载最新的Proxysql. 下面跟 ...

  9. Python内置函数(35)——next

    英文文档: next(iterator[, default]) Retrieve the next item from the iterator by calling its __next__() m ...

  10. emqtt 试用(二)验证 emq 和 mosquito 的共享订阅

    本地订阅(Local Subscription) 本地订阅(Local Subscription)只在本节点创建订阅与路由表,不会在集群节点间广播全局路由,非常适合物联网数据采集应用. 使用方式: 订 ...