ng机器学习视频笔记(二)

——梯度下降算法解释以及求解θ

(转载请附上本文链接——linhxx)

 

一、解释梯度算法

梯度算法公式以及简化的代价函数图,如上图所示。

1)偏导数

由上图可知,在a点,其偏导数小于0,故θ减去小于0的数,相当于加上一个数。另外,从图上可以看出,在a点不是最佳点,需要继续向右移动,即a需要增加。因此符合要求。

对于在b点,可以同理得到需要减少的结果。

2)学习速率α

α表示点移动向最小值点的速率,α取值需要注意。

当值太大,每次移动的距离太长,可能导致在最小值点附近时,移动会超出最小值点的位置,导致不断的在大于、小于最小值点的位置偏移,无法收敛;

当值太小,移动速度 非常慢,会导致程序执行时间太久。

另外,由于在越接近最小值点,偏导数的数量值(绝对值)越小,因此变化速率本身就会变慢,因此选定α后,不需要再去调整数值,其自己会减慢速率。

二、梯度算法缺陷

由上图可知,对于有多个极小值点的代价函数,梯度算法只能取到局部最小值点,即函数的极小值点,但是没法保证该点就是最小值点。

三、求解θ

公式如上图所示,实质上就是求偏倒的结果。

不断的计算θ0和θ1,直到偏导数为0(或者设定小于某个阈值),则停止计算,此时的结果则是对于某个起始点的局部最优结果。

——written by linhxx

更多最新文章,欢迎关注微信公众号“决胜机器学习”,或扫描右边二维码。

ng机器学习视频笔记(二) ——梯度下降算法解释以及求解θ的更多相关文章

  1. ng机器学习视频笔记(一)——线性回归、代价函数、梯度下降基础

    ng机器学习视频笔记(一) --线性回归.代价函数.梯度下降基础 (转载请附上本文链接--linhxx) 一.线性回归 线性回归是监督学习中的重要算法,其主要目的在于用一个函数表示一组数据,其中横轴是 ...

  2. ng机器学习视频笔记(十六) ——从图像处理谈机器学习项目流程

    ng机器学习视频笔记(十六) --从图像处理谈机器学习项目流程 (转载请附上本文链接--linhxx) 一.概述 这里简单讨论图像处理的机器学习过程,主要讨论的是机器学习的项目流程.采用的业务示例是O ...

  3. Andrew Ng机器学习课程笔记(二)之逻辑回归

    Andrew Ng机器学习课程笔记(二)之逻辑回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364636.html 前言 ...

  4. Andrew Ng机器学习课程笔记(四)之神经网络

    Andrew Ng机器学习课程笔记(四)之神经网络 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365730.html 前言 ...

  5. Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归)

    title: Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归) tags: 机器学习, 学习笔记 grammar_cjkRuby: true --- 之前看过一遍,但是总是模 ...

  6. Andrew Ng机器学习课程笔记(三)之正则化

    Andrew Ng机器学习课程笔记(三)之正则化 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365475.html 前言 ...

  7. Andrew Ng机器学习课程笔记(一)之线性回归

    Andrew Ng机器学习课程笔记(一)之线性回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364598.html 前言 ...

  8. Andrew Ng机器学习课程笔记--汇总

    笔记总结,各章节主要内容已总结在标题之中 Andrew Ng机器学习课程笔记–week1(机器学习简介&线性回归模型) Andrew Ng机器学习课程笔记--week2(多元线性回归& ...

  9. Andrew Ng机器学习课程笔记(五)之应用机器学习的建议

    Andrew Ng机器学习课程笔记(五)之 应用机器学习的建议 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7368472.h ...

随机推荐

  1. python 版本管理工具 pyenv 使用备忘

    安装步骤 安装 xcode-select 以及 homebrew(前者在安装 git 的时候装过,后者 mac 开发必备无需解释) 安装 pyenv brew install pyenv,用 pyen ...

  2. python * 的区别

    >>> ['Spam']*5 ['Spam', 'Spam', 'Spam', 'Spam', 'Spam'] >>> ['Spam'*5] ['SpamSpamS ...

  3. Python => ValueError: unsupported format character 'Y' (0x59)

    产生问题的原因是:SQL语句的'%Y-%m-%d'部分被再次解释为字符串格式,并抛出错误 解决方案一:字符串%形式进行替换 '%string' % string. '%Y-%m-%d'改写为'%%%% ...

  4. 【转载】从头编写 asp.net core 2.0 web api 基础框架 (4) EF配置

    Github源码地址:https://github.com/solenovex/Building-asp.net-core-2-web-api-starter-template-from-scratc ...

  5. orm查询

    all:models.表名.objects.all() 结果是queryset集合 filter: models.表名.objects.filter() 结果是queryset集合 get: mode ...

  6. 洛谷 P1308 统计单词数【字符串+模拟】

    P1308 统计单词数 题目描述 一般的文本编辑器都有查找单词的功能,该功能可以快速定位特定单词在文章中的位置,有的还能统计出特定单词在文章中出现的次数. 现在,请你编程实现这一功能,具体要求是:给定 ...

  7. hihoCoder1498-Diligent Robots

    #1498 : Diligent Robots Time Limit:10000ms Case Time Limit:1000ms Memory Limit:256MB Description The ...

  8. CF 610E. Alphabet Permutations

    题目:http://codeforces.com/problemset/problem/610/E 如果存在c1,c2在原串相邻且在询问串中c1在c2前面的话,把它们在原串出现次数加起来记作sum,那 ...

  9. 【django基础补充之URL,视图,模版】

    一.url路由配置 URL配置(URLconf)就像Django 所支撑网站的目录.它的本质是URL与要为该URL调用的视图函数之间的映射表:你就是以这种方式告诉Django,对于这个URL调用这段代 ...

  10. console.log 用法

    转自http://www.cnblogs.com/ctriphire/p/4116207.html 大家都有用过各种类型的浏览器,每种浏览器都有自己的特色,本人拙见,在我用过的浏览器当中,我是最喜欢C ...