【CF1152F】Neko Rules the Catniverse(动态规划)

题面

CF

题解

我们先考虑一个需要扫一遍所有位置的做法。

那么状态一定是\(f[i]\)然后什么什么表示考虑到当前第\(i\)个位置的答案。

看看我们还需要记录什么,首先肯定要记录的是当前已经选了几个,所以多了一维\(j\)。

然后考虑现在这个能不能选。

首先如果这个元素放在某个元素之前,后面一定是合法的,因为当前位置一定是全局的最大值,所以只需要考虑它可以放在谁之前就行了。

而限制是\(x\le y+m\),那么我们暴力压状态记录前\(m\)个是否被选择。

那么首先这个元素放在第一个一定是可以的,然后这个元素如果不放在第一个就要放在某一个的后面,那么就只有可能放在最后\(m\)个存在元素的后面,那么判断一下就行啦。

然后发现转移是一模一样的,所以直接矩乘就行了。

#include<iostream>
#include<cstdio>
using namespace std;
#define MOD 1000000007
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int b[13][1<<4],bel[1<<4],n,K,m,N,ans;
struct Matrix
{
int s[210][210];
void clear(){for(int i=1;i<=N;++i)for(int j=1;j<=N;++j)s[i][j]=0;}
void init(){clear();for(int i=1;i<=N;++i)s[i][i]=1;}
int*operator[](int x){return s[x];}
}A,Tr;
Matrix operator*(Matrix &a,Matrix &b)
{
Matrix c;c.clear();
for(int i=1;i<=N;++i)
for(int j=1;j<=N;++j)
for(int k=1;k<=N;++k)
c[i][j]=(c[i][j]+1ll*a[i][k]*b[k][j])%MOD;
return c;
}
int main()
{
n=read();K=read();m=read();
for(int i=1;i<1<<m;++i)bel[i]=bel[i>>1]+(i&1);
for(int j=0;j<=K;++j)
for(int S=0;S<1<<m;++S)b[j][S]=++N;
for(int j=0;j<=K;++j)
for(int S=0;S<1<<m;++S)
{
int T=(S<<1)&((1<<m)-1);
add(Tr[b[j][S]][b[j][T]],1);
if(j<K)add(Tr[b[j][S]][b[j+1][T|1]],bel[S]+1);
}
A[1][1]=1;
while(n){if(n&1)A=A*Tr;Tr=Tr*Tr;n>>=1;}
for(int i=0;i<1<<m;++i)add(ans,A[1][b[K][i]]);
printf("%d\n",ans);
return 0;
}

【CF1152F】Neko Rules the Catniverse(动态规划)的更多相关文章

  1. CF1152 F. Neko Rules the Catniverse (dp)

    题意 一条长为 \(n\) 的数轴,可以从任意整点 \(\in [1, n]\) 出发,假设当前在 \(x\) ,下一步能到达的点 \(y\) 需要满足,\(y\) 从未到过,且 \(1 \le y ...

  2. Codeforces Round #554 (Div. 2) F2. Neko Rules the Catniverse (Large Version) (矩阵快速幂 状压DP)

    题意 有nnn个点,每个点只能走到编号在[1,min(n+m,1)][1,min(n+m,1)][1,min(n+m,1)]范围内的点.求路径长度恰好为kkk的简单路径(一个点最多走一次)数. 1≤n ...

  3. CodeForces 1152F2 Neko Rules the Catniverse (Large Version)

    题目链接:http://codeforces.com/problemset/problem/1152/F2 题目大意 见http://codeforces.com/problemset/problem ...

  4. CodeForces 1152F1 Neko Rules the Catniverse (Small Version)

    题目链接:http://codeforces.com/problemset/problem/1152/F1 题目大意 有 n 个星球,给定限制 m,从 x 星球走到 y 星球的条件是,$1 \leq ...

  5. CF859C Pie Rules 动态规划 逆推_思维题

    题意:有 nnn 个物品,每个物品有不同的价值,物品按顺序分给两个人,有一块令牌,每回合拥有令牌的人拥有物品的分配权,但是该回合未获得物品的那个人会在下回合获得令牌,开始令牌在Bob手里,两个人都采取 ...

  6. hdu 1087 动态规划之最长上升子序列

    http://acm.hdu.edu.cn/showproblem.php?pid=1087 Online Judge Online Exercise Online Teaching Online C ...

  7. POJ3176——Cow Bowling(动态规划)

    Cow Bowling DescriptionThe cows don't use actual bowling balls when they go bowling. They each take ...

  8. POJ_3176_Cow_Bowling_(数字三角形)_(动态规划)

    描述 http://poj.org/problem?id=3176 给出一个三角形,每个点可以走到它下面两个点,将所有经过的点的值加起来,问最大的和是多少. Cow Bowling Time Limi ...

  9. 动态规划——线性dp

    我们在解决一些线性区间上的最优化问题的时候,往往也能够利用到动态规划的思想,这种问题可以叫做线性dp.在这篇文章中,我们将讨论有关线性dp的一些问题. 在有关线性dp问题中,有着几个比较经典而基础的模 ...

随机推荐

  1. [翻译]在Windows版或MacOS版的Microsoft Edge上安装一个谷歌浏览器拓展

    原文:Install a Chrome Web Store extension on Microsoft Edge for Windows and MacOS 拓展阅读:What to expect ...

  2. [.NET] 一步步打造一个简单的 MVC 电商网站 - BooksStore(一)

    一步步打造一个简单的 MVC 电商网站 - BooksStore(一) 本系列的 GitHub地址:https://github.com/liqingwen2015/Wen.BooksStore &l ...

  3. 关于C# 中的布尔运算符 "&" "|” 与 其类似的条件布尔运算符 "&&" "||" 区别说明。

    运算符使用说明如下:  分隔符 ———————————————————————————— 分隔符 ———————————————————————————— 上述两个运算符的结果与&和 | 完全 ...

  4. Java自增和自减操作符——++/--的那些事

    1. 概述 自增操作符(++)和自减操作符(--)是对变量进行加1和减1的操作. 2.分类说明 ++和--是对变量进行自增1和自减1的简写操作符.许多编程任务中经常需要对变量加1或者减1,所以采用这两 ...

  5. 25 ,CSS 构造表格

    1. 表格的基础构造 2. 边距和边线应用 3. 隐藏和删除应用 1.  简单表格 table { width:auto; border-collapse:collapse; margin-left: ...

  6. Dotnetcore 开发速记

    1.System.InvalidOperationException:"Internal connection fatal error." 全球固定模式,坑爹 https://gi ...

  7. android activity的生命周期和启动模式

    activity是android开发的基本中的基本每一个项目都会有activity.activity有自己的生命周期,在网上有很多博客和资料,在这里我也只是印证一下. 一个activity: 在打开a ...

  8. 30号快手笔试(三道ac两道半)————-历史上最大的网络失误orz

    case  50 ,20,100 做题以来第一次重大失误:最后两分钟发现手机关机了,然后充电开机orz 页面是js代码, 钟表是一直会走的, 手机没电了, 电脑连接的手机的热点: 只顾在调试,先过了第 ...

  9. vue build错误异常的解决方法

    在生成vue项目的时候,出现如下错误 ERROR in static/js/index.d66d806fcdd72b36147b.js from UglifyJs Unexpected token: ...

  10. U盘启动盘安装Windows10操作系统详解

    没有装过系统的同学,总以为装系统很神秘?是专业技术人员干的事情.今天我们来看看怎么借助常用的U盘装上全新的win10系统. 准备材料: 软件软碟通,可上官网下载:https://cn.ultraiso ...