题目大意:

给定一张图,支持删边,求两点的路径中所有权值的最大值的最小值,貌似很绕的样子

由于有删边,不难想到\(LCT\),又因为\(LCT\)不支持维护图,而且只有删边操作,于是我们考虑时间回溯。

把这道题变成模板有几个问题:

(思路为个人\(YY\),可能非常麻烦)

\(1.\)我们怎么确定最后的状态呢?

首先我们先用\(map\)存每一条边,在询问操作时,每删一条边,就把他在\(map\)上去掉,最后剩下的边即为最终状态

\(2.\)加边的时候会出现环该怎么办呢?

要让答案更优,我们显然要动态维护最小生成树,然后维护了最小生成树后就只要找最小生成树树上两点的最大值了

附上常数极大又十分丑陋的代码:

#include<bits/stdc++.h>
using namespace std;
#define il inline
#define re register
#define file(a) freopen(#a".in","r",stdin);freopen(#a".out","w",stdout)
il int read() {
re int x = 0, f = 1; re char c = getchar();
while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - 48, c = getchar();
return x * f;
}
#define rep(i, s, t) for(re int i = s; i <= t; ++ i)
#define drep(i, s, t) for(re int i = t; i >= s; -- i)
#define updown(x) swap(ch[1][x], ch[0][x]), tag[x] ^= 1
#define get_fa(x) ch[1][fa[x]] == x
#define isroot(x) ch[1][fa[x]] == x || ch[0][fa[x]] == x
#define _ 150006
int n, m, Q, ans[_], Top, st[_], top, fa[_], tag[_], ch[2][_], val[_], ma[_], id[_];
struct node {int opt, u, v, w;}e[_];
pair<int, int> a[_];
map<pair<int, int>, int> q, Id;
il void pushdown(int x) {
if(!tag[x]) return;
if(ch[1][x]) updown(ch[1][x]);
if(ch[0][x]) updown(ch[0][x]);
tag[x] = 0;
}
il void pushup(int x) {
ma[x] = val[x], id[x] = x;
if(ch[1][x] && ma[x] < ma[ch[1][x]]) ma[x] = ma[ch[1][x]], id[x] = id[ch[1][x]];
if(ch[0][x] && ma[x] < ma[ch[0][x]]) ma[x] = ma[ch[0][x]], id[x] = id[ch[0][x]];
}
il void rotate(int x) {
int y = fa[x], z = fa[y], w = get_fa(x), k = get_fa(y);
ch[w][y] = ch[w ^ 1][x], fa[ch[w ^ 1][x]] = y;
if(isroot(y)) ch[k][z] = x; fa[x] = z;
ch[w ^ 1][x] = y, fa[y] = x;
pushup(y), pushup(x);
}
il void Splay(int x) {
int y = x;
st[++ top] = x;
while(isroot(y)) st[++ top] = y = fa[y];
while(top) pushdown(st[top --]);
while(isroot(x)) {
int y = fa[x];
if(isroot(y)) rotate(get_fa(x) == get_fa(y) ? y : x);
rotate(x);
}
}
il void access(int x) {for(int y = 0; x; x = fa[y = x]) Splay(x), ch[1][x] = y, pushup(x);}
il void makeroot(int x) {access(x), Splay(x), updown(x);}
il int findroot(int x) {
access(x), Splay(x);
while(ch[0][x]) x = ch[0][x];
Splay(x);
return x;
}
il void spilt(int x, int y) {makeroot(x), access(y), Splay(y);}
il void link(int x, int y) {
makeroot(x);
if(findroot(y) != x) fa[x] = y;
}
int main() {
file(a);
n = read(), m = read(), Q = read();
rep(i, 1, m) {
int u = read(), v = read();
a[i] = make_pair(u, v), q[make_pair(v, u)] = q[a[i]] = read(), val[i + n] = q[a[i]];
Id[a[i]] = Id[make_pair(v, u)] = i;
}
rep(i, 1, Q) {
int opt = read(), u = read(), v = read();
e[i] = (node){opt, u, v, q[make_pair(u, v)]};
}
rep(i, 1, Q)
if(e[i].opt == 2) q[make_pair(e[i].u, e[i].v)] = q[make_pair(e[i].v, e[i].u)] = 0;
rep(i, 1, m) {
if(q[a[i]] == 0) continue;
if(findroot(a[i].first) == findroot(a[i].second)) {
spilt(a[i].first, a[i].second); int now = id[a[i].second];
if(val[i + n] >= val[now]) continue;
Splay(now), fa[ch[1][now]] = fa[ch[0][now]] = 0;
}
link(a[i].first, i + n), link(i + n, a[i].second);
}
drep(i, 1, Q) {
int u = e[i].u, v = e[i].v;
if(e[i].opt == 2) {
if(findroot(u) == findroot(v)) {
spilt(u, v); int now = id[v];
if(e[i].w >= val[now]) continue;
Splay(now), fa[ch[1][now]] = fa[ch[0][now]] = 0;
}
link(u, Id[make_pair(u, v)] + n), link(Id[make_pair(u, v)] + n, v);
}
else spilt(u, v), ans[++ Top] = val[id[v]];
}
drep(i, 1, Top) printf("%d\n", ans[i]);
return 0;
}

[WC2006]水管局长(LCT)的更多相关文章

  1. P4172 [WC2006]水管局长 LCT维护最小生成树

    \(\color{#0066ff}{ 题目描述 }\) SC 省 MY 市有着庞大的地下水管网络,嘟嘟是 MY 市的水管局长(就是管水管的啦),嘟嘟作为水管局长的工作就是:每天供水公司可能要将一定量的 ...

  2. luogu P4172 [WC2006]水管局长 LCT维护动态MST + 离线

    Code: #include<bits/stdc++.h> #define maxn 1200000 #define N 120000 using namespace std; char ...

  3. 洛谷.4172.[WC2006]水管局长(LCT Kruskal)

    题目链接 洛谷(COGS上也有) 不想去做加强版了..(其实处理一下矩阵就好了) 题意: 有一张图,求一条x->y的路径,使得路径上最长边尽量短并输出它的长度.会有<=5000次删边. 这 ...

  4. 洛谷4172 WC2006水管局长(LCT维护最小生成树)

    这个题和魔法森林感觉有很相近的地方啊 同样也是维护一个类似最大边权最小的生成树 但是不同的是,这个题是有\(cut\)和询问,两种操作.... 这可如何是好啊? 我们不妨倒着来考虑,假设所有要\(cu ...

  5. P4172 [WC2006]水管局长(LCT)

    P4172 [WC2006]水管局长 LCT维护最小生成树,边权化点权.类似 P2387 [NOI2014]魔法森林(LCT) 离线存储询问,倒序处理,删边改加边. #include<iostr ...

  6. [bzoj2594][Wc2006]水管局长数据加强版 (lct)

    论蒟蒻的自我修养T_T.. 和noi2014魔法森林基本一样...然而数据范围大得sxbk...UPD:这题如果用lct判联通的话可能会被卡到O(mlogm)..所以最好还是用并查集吧 一开始数组开太 ...

  7. BZOJ 2594: [Wc2006]水管局长数据加强版 [LCT kruskal]

    2594: [Wc2006]水管局长数据加强版 Time Limit: 25 Sec  Memory Limit: 128 MBSubmit: 2917  Solved: 918[Submit][St ...

  8. [BZOJ2594] [WC2006]水管局长(Kruskal+LCT)

    [BZOJ2594] [WC2006]水管局长(Kruskal+LCT) 题面 SC省MY市有着庞大的地下水管网络,嘟嘟是MY市的水管局长(就是管水管的啦),嘟嘟作为水管局长的工作就是:每天供水公司可 ...

  9. BZOJ 2594: [Wc2006]水管局长数据加强版( LCT )

    离线然后就是维护加边的动态MST, Link cut tree秒掉..不过我写+调了好久...时间复杂度O(NlogN + MlogM) ------------------------------- ...

  10. [BZOJ2594][WC2006]水管局长加强版(LCT+Kruskal)

    2594: [Wc2006]水管局长数据加强版 Time Limit: 25 Sec  Memory Limit: 128 MBSubmit: 4452  Solved: 1385[Submit][S ...

随机推荐

  1. C# 把字符串类型日期转换为日期类型(转载)

    C# 把字符串类型日期转换为日期类型   来源:https://www.cnblogs.com/raincedar/p/7009243.html 方法一:Convert.ToDateTime(stri ...

  2. win10安装tensorflow-gpu1.13.1+cuda10.0+cudnn7.3.1

    一,本机配置 Win10 64bit NVIDIA GeForce GTX 960M Python3.7(Anaconda) 二,安装CUDA 亲测,TensorFlow-gpu1.13.1支持cud ...

  3. js之制作简易红绿灯

    HTML代码: 在一个div容器内,设置3个span <body> <div id="i1"> <span class="light red ...

  4. offsetLeft 解析

    前言:先看下w3c与之相关的介绍: element.offsetHeight 返回元素的高度. element.offsetWidth 返回元素的宽度. element.offsetLeft 返回元素 ...

  5. Cookie 数据浅谈

    Cookie 是一些数据, 存储于你电脑上的文本文件中. 当 web 服务器向浏览器发送 web 页面时,在连接关闭后,服务端不会记录用户的信息.   Cookie 的作用就是用于解决 "如 ...

  6. Spring boot 入门(四):集成 Shiro 实现登陆认证和权限管理

    本文是接着上篇博客写的:Spring boot 入门(三):SpringBoot 集成结合 AdminLTE(Freemarker),利用 generate 自动生成代码,利用 DataTable 和 ...

  7. 【设计模式】桥接模式 Bridge Pattern

    开篇还是引用吕振宇老师的那篇经典的文章<设计模式随笔-蜡笔与毛笔的故事>.这个真是太经典了,没有比这个例子能更好的阐明桥接模式了,这里我就直接盗来用了. 现在市面上卖的蜡笔很多,各种型号, ...

  8. 碰到了通过Movie显示gif图片,有部分图片的duration为0导致gif只显示第一帧

    解决办法,改为使用android-gif-drawable.jar来显示gif图片(需要配合com.android.support:support-v4:18.0.0使用) GifImageView ...

  9. vmware 6 虚拟化 全系列 序列号

    vmware 6 虚拟化 全系列 序列号   vSphere 6 Hypervisor HY0XH-D508H-081U8-JA2GH-CCUM2 4C4WK-8KH8L-H85J0-UHCNK-8C ...

  10. C# -- 泛型的使用

    C# -- 泛型的使用 1. 使用泛型 class Program { static void Main(string[] args) { ; string str = "Hello&quo ...