3194. 【HNOI模拟题】化学(无标号无根树计数)
Problem
- 求\(n\)个点的每个点度数不超过\(4\)的无标号无根树个数.
Data constraint
- \(1\le n\le 500\)
Solution
尝试着把问题一般化。我们来考虑一个这样的问题:求\(n\)个节点,每个节点度数不超过\(m\)的无根树个数。
为了解决这个问题,我们不妨先来解决有根树的情况。注意这里的树都是无标号的。所以每一种合法树的根的子树的\(size\)都可以看做是单调的。然而无根树的计数比较繁琐。例如在无根树中以下两种情况视作同一种:
而在有根树情况下,这两种方案显然是不一样的。但注意,对于有根树这两种情况也是一样的:
所以转化成有根树,我们可以更方便的进行DP。并且通过上面这两幅图我们发现唯一需要注意的是子树\(size\)间的关系。
不妨令\(f_{i,j}\)表示当前根节点度为\(j\),总共有\(i\)个节点时的方案数。此外,我们理应记录一下当前子树的最大\(size\),然后每次枚举个更大的\(size\)去尝试着转移。但实质上我们可以不用记录,因为我们可以直接从小到大枚举这个\(size\),然后转移.
枚举当前最大子树的个数\(k\),令\(s=\sum^{m−1}_{k=0}f(size,k)\),我们不难写出这样一个式子:
\]
其中\(\left\{ \begin{matrix}s+k-1\\k \end{matrix} \right\}\)表示的是在\(s\)个盒子中放\(k\)个球,盒子不同,球相同,可以重复放的方案。这正好符合我们的要求。不难发现,我们这样枚举的\(size\)一定可以保证子树是单调的,那么避免了算重。
解决了有根树,我们现在来考虑无根树的问题。事实上,有一个极其巧妙且重要的性质:两颗无根树同构,则以它们重心为根的有根树同构
那么我们就只需保证\(size\le (n-1)>>1\)即可。
唯一需要注意的是,当一棵树有两个重心的时候,我们的\(size\)都是小于\(\frac{n}{2}\)的,所以我们要特殊处理一下两个\(size=\frac{n}{2}\)的拼接,这也同样是一个组合数。与上面的处理是一样的
最后是丧病的高精度:
Code
#include <bits/stdc++.h>
#define F(i, a, b) for (int i = a; i <= b; i ++)
#define G(i, a, b) for (int i = a; i >= b; i --)
#define mem(a, b) memset(a, b, sizeof a)
const int N = 501, M = 4, T = 250;
using namespace std;
int n;
struct Data {
int len, a[T];
Data() { len = 0, mem(a, 0); }
friend Data operator + (Data a, Data b) {
Data c; c.len = max(a.len, b.len);
F(i, 1, c.len)
c.a[i] += a.a[i] + b.a[i], c.a[i + 1] += c.a[i] / 10000, c.a[i] %= 10000;
c.len += (c.a[c.len + 1] > 0);
return c;
}
friend Data operator < (Data a, int b) {
a.a[1] += b;
for (int i = 1; i <= a.len; i ++)
a.a[i + 1] += a.a[i] / 10000, a.a[i] %= 10000, a.len += (a.a[a.len + 1] > 0);
return a;
}
friend Data operator > (Data a, int b) {
a.a[1] -= b;
for (int i = 1; i <= a.len; i ++)
if (a.a[i] < 0) a.a[i] += 10000, a.a[i + 1] --;
while (a.a[a.len] == 0) a.len --;
return a;
}
friend Data operator * (Data a, int b) {
Data c; c.len = a.len;
F(i, 1, c.len)
c.a[i] = a.a[i] * b;
for (int i = 1; i <= c.len; i ++)
c.a[i + 1] += c.a[i] / 10000, c.a[i] %= 10000, c.len += (c.a[c.len + 1] > 0);
return c;
}
friend Data operator & (Data a, Data b) {
Data c; c.len = a.len + b.len;
F(i, 1, a.len)
F(j, 1, b.len) {
c.a[i + j - 1] += a.a[i] * b.a[j];
c.a[i + j] += c.a[i + j - 1] / 10000;
c.a[i + j - 1] %= 10000;
}
while (c.a[c.len] == 0) c.len --;
return c;
}
friend Data operator / (Data a, int b) {
Data c; int x = 0;
G(i, a.len, 1) {
x = x * 10000 + a.a[i];
if (x >= b)
c.a[++ c.len] = x / b, x %= b;
else
if (c.len) c.len ++;
}
F(i, 1, c.len >> 1) swap(c.a[i], c.a[c.len - i + 1]);
return c;
}
} f[N][M + 1], Ans;
Data C(Data x, int y) {
Data ans; ans.a[1] = ans.len = 1; int mul = 1;
F(i, 1, y) {
Data X;
X = x > (i - 1);
ans = ans & X;
mul = mul * i;
}
return ans / mul;
}
int main() {
scanf("%d", &n), f[1][0].a[1] = f[1][0].len = 1;
F(mx, 1, n - 1 >> 1) {
Data s;
F(i, 0, M - 1)
s = s + f[mx][i];
G(i, n, mx + 1)
F(j, 1, M)
F(k, 1, min(j, i / mx)) {
Data t = s < (k - 1);
Data R = C(t, k);
Data T = f[i - k * mx][j - k] & R;
f[i][j] = f[i][j] + T;
}
}
F(i, 0, M)
Ans = Ans + f[n][i];
if (!(n & 1)) {
Data s;
F(i, 0, M - 1)
s = s + f[n >> 1][i];
s = s < 1;
Ans = Ans + C(s, 2);
}
printf("%d", Ans.a[Ans.len]);
G(i, Ans.len - 1, 1)
printf("%04d", Ans.a[i]);
}
3194. 【HNOI模拟题】化学(无标号无根树计数)的更多相关文章
- 洛谷 P4708 画画(无标号欧拉子图计数)
首先还是类似于无标号无向图计数那样,考虑点的置换带动边的置换,一定构成单射,根据 Burnside 引理: \[|X / G| = \frac{1}{|G|}\sum\limits_{g \in G} ...
- poj 1888 Crossword Answers 模拟题
Crossword Answers Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 869 Accepted: 405 D ...
- 全国信息学奥林匹克联赛 ( NOIP2014) 复赛 模拟题 Day1 长乐一中
题目名称 正确答案 序列问题 长途旅行 英文名称 answer sequence travel 输入文件名 answer.in sequence.in travel.in 输出文件名 answer. ...
- ZOJ1111:Poker Hands(模拟题)
A poker deck contains 52 cards - each card has a suit which is one of clubs, diamonds, hearts, or sp ...
- POJ 3923 Ugly Windows(——考察思维缜密性的模拟题)
题目链接: http://poj.org/problem?id=3923 题意描述: 输入一个n*m的屏幕 该屏幕内有至少一个对话框(每个对话框都有对应的字母表示) 判断并输出该屏幕内处于最表层的对话 ...
- POJ - 1835 宇航员(模拟题)
问题描述: 宇航员在太空中迷失了方向,在他的起始位置现在建立一个虚拟xyz坐标系,称为绝对坐标系,宇航员正面的方向为x轴正方向,头顶方向为z轴正方向,则宇航员的初始状态如下图所示: 现对六个方向分别标 ...
- CSP复赛day2模拟题
没错,我又爆零了.....先让我自闭一分钟.....so 当你忘记努力的时候,现实会用一记响亮的耳光告诉你东西南北在哪. 好了,现在重归正题: 全国信息学奥林匹克联赛(NOIP2014) 复赛模拟题 ...
- poj 1008:Maya Calendar(模拟题,玛雅日历转换)
Maya Calendar Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 64795 Accepted: 19978 D ...
- CodeForces - 427B (模拟题)
Prison Transfer Time Limit: 1000MS Memory Limit: 262144KB 64bit IO Format: %I64d & %I64u Sub ...
随机推荐
- vue v-for动画bug
因为是v-for 循环 出来的,:key = "index" 会出现问题,所以,需要把:key="XXX"换成其他属性就好了. 链接参考: https://se ...
- google zxing android扫描优化&解析
这里先给出zxing包的源码地址 zip包:https://codeload.github.com/zxing/zxing/zip/master Github:https://github.com/z ...
- PL/SQL连接数据库时报错12154
研究了半天,最终我发现和环境变量没有半毛钱关系,就是tsnnames这个文件的格式错了.
- 『Shell编程』学习记录(2)
例1.文件io #include <stdio.h> #include <sys/types.h> #include <sys/stat.h> #include & ...
- NPM -- 初探--01
NPM是随同NodeJS一起安装的包管理工具,能解决NodeJS代码部署上的很多问题,常见的使用场景有以下几种: 允许用户从NPM服务器下载别人编写的第三方包到本地使用. 允许用户从NPM服务器下载并 ...
- 海思uboot启动流程详细分析(一)
第一阶段 start.S 首先我们可以在u-boot.lds中看到ENTRY(_start),即指定了入口_start,_start也就是整个start.S的最开始: 1. reset 在arch\a ...
- Centos7上安装单机版redis
Centos 7 上安装单机版redis Redis 官网下载 https://redis.io/download 1. 下载.解压.安装 cd /usr/local #wget http://dow ...
- How to Make Fibonacci Confusing
前几天同事发了这么一段代码 (fn => (f => f(f))(f => fn(n => f(f)(n))) )(g => n => [1, 2].indexOf ...
- 使用Swagger辅助开发Fabric Application的Web API
前面的几篇博客,我们已经把Fabric环境搭建好了,也可以使用Go开发ChainCode了,那么我们在ChainCode开发完毕后,可以通过CLI来测试ChainCode的正确性,ChainCode开 ...
- CentOS7.x搭建时间同步服务器
关于chrony Chrony是一个开源的自由软件,像CentOS7或基于RHEL 7操作系统,已经是默认服务,默认配置文件在 /etc/chrony.conf 它能保持系统时间与时间服务器(NTP) ...