目标检测 IOU(交并比) 理解笔记
交并比(Intersection-over-Union,IoU):
目标检测中使用的一个概念
是产生的候选框(candidate bound)与原标记框(ground truth bound)的交叠率
即它们的交集与并集的比值。最理想情况是完全重叠,即比值为1。
基础知识:
交集:
集合论中,设A,B是两个集合,由所有属于集合A且属于集合B的元素所组成的集合,叫做集合A与集合B的交集,记作A∩B。
eg:
A={1,2,3} B={2,3,4}
A n B = {2,3}
并集:
给定两个集合A,B,把他们所有的元素合并在一起组成的集合,叫做集合A与集合B的并集,记作A∪B,读作A并B。
eg:
A={1,2,3} B={2,3,4}
A U B = {1,2,3,4}
图示

IOU:

python实现
import numpy as np
def compute_iou(box1, box2, wh=False):
"""
compute the iou of two boxes.
Args:
box1, box2: [xmin, ymin, xmax, ymax] (wh=False) or [xcenter, ycenter, w, h] (wh=True)
wh: the format of coordinate.
Return:
iou: iou of box1 and box2.
"""
if wh == False:
xmin1, ymin1, xmax1, ymax1 = box1
xmin2, ymin2, xmax2, ymax2 = box2
else:
xmin1, ymin1 = int(box1[0]-box1[2]/2.0), int(box1[1]-box1[3]/2.0)
xmax1, ymax1 = int(box1[0]+box1[2]/2.0), int(box1[1]+box1[3]/2.0)
xmin2, ymin2 = int(box2[0]-box2[2]/2.0), int(box2[1]-box2[3]/2.0)
xmax2, ymax2 = int(box2[0]+box2[2]/2.0), int(box2[1]+box2[3]/2.0)
## 获取矩形框交集对应的左上角和右下角的坐标(intersection)
xx1 = np.max([xmin1, xmin2])
yy1 = np.max([ymin1, ymin2])
xx2 = np.min([xmax1, xmax2])
yy2 = np.min([ymax1, ymax2])
## 计算两个矩形框面积
area1 = (xmax1-xmin1) * (ymax1-ymin1)
area2 = (xmax2-xmin2) * (ymax2-ymin2)
inter_area = (np.max([0, xx2-xx1])) * (np.max([0, yy2-yy1])) #计算交集面积
iou = inter_area / (area1+area2-inter_area+1e-6) #计算交并比
return iou
参考
https://blog.csdn.net/sinat_34474705/article/details/80045294
https://blog.csdn.net/mdjxy63/article/details/79343733
目标检测 IOU(交并比) 理解笔记的更多相关文章
- 目标检测——IoU 计算
Iou 的计算 我们先考虑一维的情况:令 \(A = [x_1,x_2], B = [y_1, y_2]\),若想要 \(A\) 与 \(B\) 有交集,需要满足如下情况: 简言之,要保证 \(A\) ...
- zz目标检测
deep learning分类 目标检测-HyperNet-论文笔记 06-06 基础DL模型-Deformable Convolutional Networks-论文笔记 06-05 基础DL模型- ...
- 【目标检测】基于传统算法的目标检测方法总结概述 Viola-Jones | HOG+SVM | DPM | NMS
"目标检测"是当前计算机视觉和机器学习领域的研究热点.从Viola-Jones Detector.DPM等冷兵器时代的智慧到当今RCNN.YOLO等深度学习土壤孕育下的GPU暴力美 ...
- 目标检测 anchor 理解笔记
anchor在计算机视觉中有锚点或锚框,目标检测中常出现的anchor box是锚框,表示固定的参考框. 目标检测的任务: 在哪里有东西 难点: 目标的类别不确定.数量不确定.位置不确定.尺度不确定 ...
- 【55】目标检测之IOU交并比
交并比(Intersection over union) 你如何判断对象检测算法运作良好呢?在本笔记中,你将了解到并交比函数,可以用来评价对象检测算法.在下一个笔记中,我们用它来插入一个分量来进一步改 ...
- DeepLearning.ai学习笔记(四)卷积神经网络 -- week3 目标检测
一.目标定位 这一小节视频主要介绍了我们在实现目标定位时标签该如何定义. 上图左下角给出了损失函数的计算公式(这里使用的是平方差) 如图示,加入我们需要定位出图像中是否有pedestrian,car, ...
- 目标检测:YOLO(v1 to v3)——学习笔记
前段时间看了YOLO的论文,打算用YOLO模型做一个迁移学习,看看能不能用于项目中去.但在实践过程中感觉到对于YOLO的一些细节和技巧还是没有很好的理解,现学习其他人的博客总结(所有参考连接都附于最后 ...
- OpenCV 学习笔记 07 目标检测与识别
目标检测与识别是计算机视觉中最常见的挑战之一.属于高级主题. 本章节将扩展目标检测的概念,首先探讨人脸识别技术,然后将该技术应用到显示生活中的各种目标检测. 1 目标检测与识别技术 为了与OpenCV ...
- 目标检测中常提到的IoU和mAP究竟是什么?
看完这篇就懂了. IoU intersect over union,中文:交并比.指目标预测框和真实框的交集和并集的比例. mAP mean average precision.是指每个类别的平均查准 ...
随机推荐
- config.go 源码阅读
package main import ( "io/ioutil" "launchpad.net/goyaml" ) // ProxyConfi ...
- 用ASP.NET Core 2.0 建立规范的 REST API -- GET 和 POST
本文所需的一些预备知识可以看这里: http://www.cnblogs.com/cgzl/p/9010978.html 和 http://www.cnblogs.com/cgzl/p/9019314 ...
- 学习React Native必看的几个开源项目
学习React native ,分享几个不错的开源项目,相信你学完之后,一定会有所收获.如果还没有了解RN的同学们可以参考手把手教你React Native 实战之开山篇<一> 1.Fac ...
- TF.learn学习
官网地址:https://www.tensorflow.org/versions/r1.1/get_started/tflearn 1.代码例子 实现自定义的Estimator 使用DNNClassi ...
- 更好用的css命名方式——BEM命名
一.什么是BEM? BEM代表块(Block),元素(Element),修饰符(Modifier).无论是什么网站页面,都可以拆解成这三部分. 二.带你认识网页 我们来看一下qq的官网,它可以由三个块 ...
- 学习 JavaScript (五)核心概念:语句
语句 语句被称作是流控制语句,通常有标志性的一个或者多个关键字,if . do-while. while.for. for-in. label. break.continue.with.switch. ...
- SpringBoot + Spring Security 学习笔记(五)实现短信验证码+登录功能
在 Spring Security 中基于表单的认证模式,默认就是密码帐号登录认证,那么对于短信验证码+登录的方式,Spring Security 没有现成的接口可以使用,所以需要自己的封装一个类似的 ...
- NET微信公众号开发环境搭建(一)-了解微信由来
公众号的应用,开发及调试环境搭建 花生壳要注册 需要二十多块钱 ,还要实名认证,估计要一两天才能审核通过 主要就是在 windows搭建测试环境 1.微信的应用场景 360百科微信简介 ht ...
- sun.misc jar包
一直以来Base64算法的加密解密都是使用sun.misc包下的BASE64Encoder及BASE64Decoder来进行的.但是这个类是sun公司的内部方法,并没有在Java API中公开过,不属 ...
- Python猜数小游戏
使用random变量随机生成一个1到100之间的数 采集用户所输入的数字,如果输入的不符合要求会让用户重新输入. 输入符合要求,游戏开始.如果数字大于随机数,输出数字太大:如果小于随机数,输出数字太小 ...