Simple tutorial for using TensorFlow to compute a linear regression
"""Simple tutorial for using TensorFlow to compute a linear regression.
Parag K. Mital, Jan. 2016"""
# %% imports
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
# %% Let's create some toy data
plt.ion() #enable interactive mode
n_observations = 100
fig, ax = plt.subplots(1, 1)
xs = np.linspace(-3, 3, n_observations)
ys = np.sin(xs) + np.random.uniform(-0.5, 0.5, n_observations)
ax.scatter(xs, ys)
fig.show()
plt.draw()
# %% tf.placeholders for the input and output of the network. Placeholders are
# variables which we need to fill in when we are ready to compute the graph.
X = tf.placeholder(tf.float32)
Y = tf.placeholder(tf.float32)
# %% We will try to optimize min_(W,b) ||(X*w + b) - y||^2
# The `Variable()` constructor requires an initial value for the variable,
# which can be a `Tensor` of any type and shape. The initial value defines the
# type and shape of the variable. After construction, the type and shape of
# the variable are fixed. The value can be changed using one of the assign
# methods.
W = tf.Variable(tf.random_normal([1]), name='weight')
b = tf.Variable(tf.random_normal([1]), name='bias')
Y_pred = tf.add(tf.mul(X, W), b)
# %% Loss function will measure the distance between our observations
# and predictions and average over them.
cost = tf.reduce_sum(tf.pow(Y_pred - Y, 2)) / (n_observations - 1)
# %% if we wanted to add regularization, we could add other terms to the cost,
# e.g. ridge regression has a parameter controlling the amount of shrinkage
# over the norm of activations. the larger the shrinkage, the more robust
# to collinearity.
# cost = tf.add(cost, tf.mul(1e-6, tf.global_norm([W])))
# %% Use gradient descent to optimize W,b
# Performs a single step in the negative gradient
learning_rate = 0.01
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
# %% We create a session to use the graph
n_epochs = 1000
with tf.Session() as sess:
# Here we tell tensorflow that we want to initialize all
# the variables in the graph so we can use them
sess.run(tf.initialize_all_variables())
# Fit all training data
prev_training_cost = 0.0
for epoch_i in range(n_epochs):
for (x, y) in zip(xs, ys):
sess.run(optimizer, feed_dict={X: x, Y: y})
training_cost = sess.run(
cost, feed_dict={X: xs, Y: ys})
print(training_cost)
if epoch_i % 20 == 0:
ax.plot(xs, Y_pred.eval(
feed_dict={X: xs}, session=sess),
'k', alpha=epoch_i / n_epochs)
fig.show()
plt.draw()
# Allow the training to quit if we've reached a minimum
if np.abs(prev_training_cost - training_cost) < 0.000001:
break
prev_training_cost = training_cost
fig.show()
plt.waitforbuttonpress()
Simple tutorial for using TensorFlow to compute a linear regression的更多相关文章
- Simple tutorial for using TensorFlow to compute polynomial regression
"""Simple tutorial for using TensorFlow to compute polynomial regression. Parag K. Mi ...
- 深度学习 Deep Learning UFLDL 最新 Tutorial 学习笔记 1:Linear Regression
1 前言 Andrew Ng的UFLDL在2014年9月底更新了. 对于開始研究Deep Learning的童鞋们来说这真的是极大的好消息! 新的Tutorial相比旧的Tutorial添加了Conv ...
- Machine Learning – 第2周(Linear Regression with Multiple Variables、Octave/Matlab Tutorial)
Machine Learning – Coursera Octave for Microsoft Windows GNU Octave官网 GNU Octave帮助文档 (有900页的pdf版本) O ...
- STA 463 Simple Linear Regression Report
STA 463 Simple Linear Regression ReportSpring 2019 The goal of this part of the project is to perfor ...
- TensorFlow 学习笔记(1)----线性回归(linear regression)的TensorFlow实现
此系列将会每日持续更新,欢迎关注 线性回归(linear regression)的TensorFlow实现 #这里是基于python 3.7版本的TensorFlow TensorFlow是一个机器学 ...
- 机器学习-TensorFlow建模过程 Linear Regression线性拟合应用
TensorFlow是咱们机器学习领域非常常用的一个组件,它在数据处理,模型建立,模型验证等等关于机器学习方面的领域都有很好的表现,前面的一节我已经简单介绍了一下TensorFlow里面基础的数据结构 ...
- Tensorflow - Implement for a Softmax Regression Model on MNIST.
Coding according to TensorFlow 官方文档中文版 import tensorflow as tf from tensorflow.examples.tutorials.mn ...
- TensorFlow笔记二:线性回归预测(Linear Regression)
代码: import tensorflow as tf import numpy as np import xlrd import matplotlib.pyplot as plt DATA_FILE ...
- 深度学习 Deep Learning UFLDL 最新Tutorial 学习笔记 3:Vectorization
1 Vectorization 简述 Vectorization 翻译过来就是向量化,各简单的理解就是实现矩阵计算. 为什么MATLAB叫MATLAB?大概就是Matrix Lab,最根本的差别于其它 ...
随机推荐
- Python3中无法导入ssl模块的解决办法
这个问题,已经困扰我好几天了,本萌新刚开始接触python,想爬取几个网页试试,发现urllib无法识别https,百度后才知道要导入ssl模块,可是发现又报错了. 本人实在无法理解为什么会报错,因为 ...
- TCP 通信
一.TCP与UDP的区别 二.ServerSocket与Socket 1 ServerSocket 以上介绍的几个构造方法中,第二个构造方法最常用. 2.Socket import java.io.* ...
- [Java] 设计模式:代码形状 - lambda表达式的一个应用
[Java] 设计模式:代码形状 - lambda表达式的一个应用 Code Shape 模式 这里介绍一个模式:Code Shape.没听过,不要紧,我刚刚才起的名字. 作用 在应用程序的开发中,我 ...
- 【DotNet加密方式解析】-- 好文收藏
By -- 彭泽 一. DotNet加密方式解析--散列加密 笔记: 散列加密种类: 1.MD5 128位 2.SHA-1 160位 3.SHA-256 256位 4.SHA-384 384位 ...
- python学习之路网络编程篇(第一篇)socket初识
什么是socket 网络上的两个程序通过一个双向的通信连接实现数据的交换,这个连接的一端称为socket.socket通常也称为“套接字”,是一个通信链的句柄,可以用来实现不同虚拟机或不同计算机之间的 ...
- POJ 2135 最小费用最大流
题目链接 Farm Tour Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 18961 Accepted: 7326 D ...
- Node.js 加密
稳定性: 2 - 不稳定; 正在讨论未来版本的 API 改进,会尽量减少重大变化.详见后文. 使用 require('crypto') 来访问这个模块. 加密模块提供了 HTTP 或 HTTPS 连接 ...
- Docker内核能力机制
能力机制(Capability)是 Linux 内核一个强大的特性,可以提供细粒度的权限访问控制. Linux 内核自 2.2 版本起就支持能力机制,它将权限划分为更加细粒度的操作能力,既可以作用在进 ...
- Python3 基础语法
编码 默认情况下,Python 3源码文件以 UTF-8 编码,所有字符串都是 unicode 字符串. 当然你也可以为源码文件指定不同的编码: # -*- coding: cp-1252 -*- 标 ...
- 一些有用的Java参考资料
Better Java,一些好的Java实践 Google Java Style Guide 30个Java编程技巧 JDK8新增语法特性简介,对Java8中新增的函数接口.Lambda表达式.方法引 ...