"""Simple tutorial for using TensorFlow to compute a linear regression.

Parag K. Mital, Jan. 2016"""
# %% imports
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt

# %% Let's create some toy data
plt.ion()  #enable interactive mode
n_observations = 100
fig, ax = plt.subplots(1, 1)
xs = np.linspace(-3, 3, n_observations)
ys = np.sin(xs) + np.random.uniform(-0.5, 0.5, n_observations)
ax.scatter(xs, ys)
fig.show()
plt.draw()

# %% tf.placeholders for the input and output of the network. Placeholders are
# variables which we need to fill in when we are ready to compute the graph.
X = tf.placeholder(tf.float32)
Y = tf.placeholder(tf.float32)

# %% We will try to optimize min_(W,b) ||(X*w + b) - y||^2
# The `Variable()` constructor requires an initial value for the variable,
# which can be a `Tensor` of any type and shape. The initial value defines the
# type and shape of the variable. After construction, the type and shape of
# the variable are fixed. The value can be changed using one of the assign
# methods.
W = tf.Variable(tf.random_normal([1]), name='weight')
b = tf.Variable(tf.random_normal([1]), name='bias')
Y_pred = tf.add(tf.mul(X, W), b)

# %% Loss function will measure the distance between our observations
# and predictions and average over them.
cost = tf.reduce_sum(tf.pow(Y_pred - Y, 2)) / (n_observations - 1)

# %% if we wanted to add regularization, we could add other terms to the cost,
# e.g. ridge regression has a parameter controlling the amount of shrinkage
# over the norm of activations. the larger the shrinkage, the more robust
# to collinearity.
# cost = tf.add(cost, tf.mul(1e-6, tf.global_norm([W])))

# %% Use gradient descent to optimize W,b
# Performs a single step in the negative gradient
learning_rate = 0.01
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)

# %% We create a session to use the graph
n_epochs = 1000
with tf.Session() as sess:
    # Here we tell tensorflow that we want to initialize all
    # the variables in the graph so we can use them
    sess.run(tf.initialize_all_variables())

    # Fit all training data
    prev_training_cost = 0.0
    for epoch_i in range(n_epochs):
        for (x, y) in zip(xs, ys):
            sess.run(optimizer, feed_dict={X: x, Y: y})

        training_cost = sess.run(
            cost, feed_dict={X: xs, Y: ys})
        print(training_cost)

        if epoch_i % 20 == 0:
            ax.plot(xs, Y_pred.eval(
                feed_dict={X: xs}, session=sess),
                    'k', alpha=epoch_i / n_epochs)
            fig.show()
            plt.draw()

        # Allow the training to quit if we've reached a minimum
        if np.abs(prev_training_cost - training_cost) < 0.000001:
            break
        prev_training_cost = training_cost
fig.show()
plt.waitforbuttonpress()

Simple tutorial for using TensorFlow to compute a linear regression的更多相关文章

  1. Simple tutorial for using TensorFlow to compute polynomial regression

    """Simple tutorial for using TensorFlow to compute polynomial regression. Parag K. Mi ...

  2. 深度学习 Deep Learning UFLDL 最新 Tutorial 学习笔记 1:Linear Regression

    1 前言 Andrew Ng的UFLDL在2014年9月底更新了. 对于開始研究Deep Learning的童鞋们来说这真的是极大的好消息! 新的Tutorial相比旧的Tutorial添加了Conv ...

  3. Machine Learning – 第2周(Linear Regression with Multiple Variables、Octave/Matlab Tutorial)

    Machine Learning – Coursera Octave for Microsoft Windows GNU Octave官网 GNU Octave帮助文档 (有900页的pdf版本) O ...

  4. STA 463 Simple Linear Regression Report

    STA 463 Simple Linear Regression ReportSpring 2019 The goal of this part of the project is to perfor ...

  5. TensorFlow 学习笔记(1)----线性回归(linear regression)的TensorFlow实现

    此系列将会每日持续更新,欢迎关注 线性回归(linear regression)的TensorFlow实现 #这里是基于python 3.7版本的TensorFlow TensorFlow是一个机器学 ...

  6. 机器学习-TensorFlow建模过程 Linear Regression线性拟合应用

    TensorFlow是咱们机器学习领域非常常用的一个组件,它在数据处理,模型建立,模型验证等等关于机器学习方面的领域都有很好的表现,前面的一节我已经简单介绍了一下TensorFlow里面基础的数据结构 ...

  7. Tensorflow - Implement for a Softmax Regression Model on MNIST.

    Coding according to TensorFlow 官方文档中文版 import tensorflow as tf from tensorflow.examples.tutorials.mn ...

  8. TensorFlow笔记二:线性回归预测(Linear Regression)

    代码: import tensorflow as tf import numpy as np import xlrd import matplotlib.pyplot as plt DATA_FILE ...

  9. 深度学习 Deep Learning UFLDL 最新Tutorial 学习笔记 3:Vectorization

    1 Vectorization 简述 Vectorization 翻译过来就是向量化,各简单的理解就是实现矩阵计算. 为什么MATLAB叫MATLAB?大概就是Matrix Lab,最根本的差别于其它 ...

随机推荐

  1. Python3中无法导入ssl模块的解决办法

    这个问题,已经困扰我好几天了,本萌新刚开始接触python,想爬取几个网页试试,发现urllib无法识别https,百度后才知道要导入ssl模块,可是发现又报错了. 本人实在无法理解为什么会报错,因为 ...

  2. TCP 通信

    一.TCP与UDP的区别 二.ServerSocket与Socket 1 ServerSocket 以上介绍的几个构造方法中,第二个构造方法最常用. 2.Socket import java.io.* ...

  3. [Java] 设计模式:代码形状 - lambda表达式的一个应用

    [Java] 设计模式:代码形状 - lambda表达式的一个应用 Code Shape 模式 这里介绍一个模式:Code Shape.没听过,不要紧,我刚刚才起的名字. 作用 在应用程序的开发中,我 ...

  4. 【DotNet加密方式解析】-- 好文收藏

    By -- 彭泽 一. DotNet加密方式解析--散列加密 笔记: 散列加密种类: 1.MD5  128位 2.SHA-1  160位 3.SHA-256  256位 4.SHA-384  384位 ...

  5. python学习之路网络编程篇(第一篇)socket初识

    什么是socket 网络上的两个程序通过一个双向的通信连接实现数据的交换,这个连接的一端称为socket.socket通常也称为“套接字”,是一个通信链的句柄,可以用来实现不同虚拟机或不同计算机之间的 ...

  6. POJ 2135 最小费用最大流

    题目链接 Farm Tour Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18961   Accepted: 7326 D ...

  7. Node.js 加密

    稳定性: 2 - 不稳定; 正在讨论未来版本的 API 改进,会尽量减少重大变化.详见后文. 使用 require('crypto') 来访问这个模块. 加密模块提供了 HTTP 或 HTTPS 连接 ...

  8. Docker内核能力机制

    能力机制(Capability)是 Linux 内核一个强大的特性,可以提供细粒度的权限访问控制. Linux 内核自 2.2 版本起就支持能力机制,它将权限划分为更加细粒度的操作能力,既可以作用在进 ...

  9. Python3 基础语法

    编码 默认情况下,Python 3源码文件以 UTF-8 编码,所有字符串都是 unicode 字符串. 当然你也可以为源码文件指定不同的编码: # -*- coding: cp-1252 -*- 标 ...

  10. 一些有用的Java参考资料

    Better Java,一些好的Java实践 Google Java Style Guide 30个Java编程技巧 JDK8新增语法特性简介,对Java8中新增的函数接口.Lambda表达式.方法引 ...