http://blog.csdn.net/pipisorry/article/details/49804441

常见的曲线拟合方法

1.使偏差绝对值之和最小

2.使偏差绝对值最大的最小

     

3.使偏差平方和最小

按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。

皮皮blog

多项式拟合

多项式拟合公式

多项式阶数对数据拟合的影响

数据量较少,阶数过高,可能过拟合。

多项式拟合问题描述

假定给定一个训练数据集:

其中,是输入的观测值,是相应的输出y的观测值,,多项式函数拟合的任务是假设给定数据由次多项式函数生成,选择最有可能产生这些数据的次多项式函数,即在次多项式函数中选择一个对已知数据以及未知数据都有很好预测能力的函数。

设次多项式为,式中式单变量输入,是个参数。

参数W求解1

{实际上是一个最小二乘法多项式曲线拟合问题,根据给定的m个点,并不要求这条曲线精确地经过这些点,而是曲线y=f(x)的近似曲线y= φ(x)。}

用平方损失作为损失函数,系数是为了方便计算,将模型与训练数据代入,有

对求偏导并令其为

所以要求拟合多项式系数需要解下面这个线性方程组,求和符号上下限都是到。

所以计算出和然后将这些值带入上述线性方程组求解即可。

但是上面这个矩阵方程组求解是可以化简的:

参数求解2

{实际上是一个最小二乘法多项式曲线拟合问题,根据给定的m个点,并不要求这条曲线精确地经过这些点,而是曲线y=f(x)的近似曲线y= φ(x)。}

1. 设拟合多项式为:

2. 各点到这条曲线的距离之和,即偏差平方和如下:

3. 为了求得符合条件的a值,对等式右边求ai偏导数,因而我们得到了:

.......

4. 将等式左边进行一下化简,然后应该可以得到下面的等式:

.......

5. 把这些等式表示成矩阵的形式,就可以得到下面的矩阵:

6. 将这个范德蒙得矩阵化简后可得到:

7. 也就是说X*A=Y,那么A = (X'*X)-1*X'*Y,便得到了系数矩阵A,同时,我们也就得到了拟合曲线。

这里的X就是6中方程左边的矩阵

皮皮blog

多项式拟合的python代码实现

{注意安装相关python库}

#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
__title__ = '多项式曲线拟合'
__author__ = '皮'
__mtime__ = '11/8/2015-008'
__email__ = 'pipisorry@126.com'
"""
import numpy as np
import matplotlib.pyplot as plt
from scipy import linalg, stats

# 要拟合的函数
func = lambda x: np.sin(2 * np.pi * x)

def genPoints(p_no):
    '''
    获取要拟合的模拟数据
    '''
    x = np.random.rand(p_no)
    # x = np.linspace(0, 1, 10)
    # y要加上一个高斯分布N(0,0.01)随机偏差
, )
    return x, y

def drawCurveFitting(ax, w, x, y, order):
    '''
    绘制拟合曲线
    '''

    def drawSinCurve(ax):
, , )
        y = func(x)
        ax.plot(x, y, '--', alpha=0.6, label='sin curve')

    drawSinCurve(ax)

    def drawOriginData(ax, x, y):
        ax.scatter(x, y)

    drawOriginData(ax, x, y)

    def drawFittingCurve(ax, w, order):
, , )
        X )] for xi in x])
        y = X.dot(w)
        ax.plot(x, y, 'r', label='polynomial fitting curve')
        , )

    drawFittingCurve(ax, w, order)

    def plotSetting(ax):
        ax.legend(loc='lower right')
        # plt.title('Polynomial Curve Fitting')
        # plt.xlabel('x')
        # plt.ylabel('y',rotation='horizontal')
        ax.set_title('Polynomial Curve Fitting')
        ax.set_xlabel('x', rotation='horizontal', lod=True)
        ax.set_ylabel('y', rotation='horizontal', lod=True)

    plotSetting(ax)

    plt.show()

def polynomialFit(x, y, order):
)] for xi in x])
    Y , ))
    # W = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(Y)
    W, _, _, _ = linalg.lstsq(X, Y)
    # print(W)
    return W

if __name__ == '__main__':
    order = 3  # 拟合多项式的阶数
    p_no = 10  # 拟合的数据点的个数

)
    x, y = genPoints(p_no)
    # print(x, '\n', y)

    W = polynomialFit(x, y, order=order)

    drawCurveFitting(ax, W, x, y, order=order)

运行结果

from:http://blog.csdn.net/pipisorry/article/details/49804441

ref:李航《统计学习方法》

多项式函数拟合问题V2

最小二乘法多项式曲线拟合原理与实现

数据拟合:多项式拟合polynomial curve fitting的更多相关文章

  1. 一起啃PRML - 1.1 Example: Polynomial Curve Fitting 多项式曲线拟合

    一起啃PRML - 1.1 Example: Polynomial Curve Fitting @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ 前言: ...

  2. 【PRML读书笔记-Chapter1-Introduction】1.1 Example:Polynomial Curve Fitting

    书中给出了一个典型的曲线拟合的例子,给定一定量的x以及对应的t值,要你判断新的x对应的t值多少. 任务就是要我们去发现潜在的曲线方程:sin(2πx) 这时就需要概率论的帮忙,对于这种不确定给t赋何值 ...

  3. [PR & ML 2] [Introduction] Example: Polynomial Curve Fitting

    啊啊啊,竟然不支持latex,竟然HTML代码不能包含javascript,代码编辑器也不支持Matlab!!!我要吐槽博客的编辑器...T_T只能贴图凑合看了,代码不是图,但这次为了省脑细胞,写的不 ...

  4. 数据的平面拟合 Plane Fitting

    数据的平面拟合 Plane Fitting 看到了一些利用Matlab的平面拟合程序 http://www.ilovematlab.cn/thread-220252-1-1.html

  5. 最小二乘法多项式拟合的Java实现

    背景 由项目中需要根据一些已有数据学习出一个y=ax+b的一元二项式,给定了x,y的一些样本数据,通过梯度下降或最小二乘法做多项式拟合得到a.b,解决该问题时,首先想到的是通过spark mllib去 ...

  6. 利用Python进行多项式拟合

    多项式拟合的简单代码: import matplotlib.pyplot as plt import numpy as np x=[,,,,,,,] y=[,,,,,,,] a=np.polyfit( ...

  7. python多项式拟合:np.polyfit 和 np.polyld

    python数据拟合主要可采用numpy库,库的安装可直接用pip install numpy等. 1. 原始数据:假如要拟合的数据yyy来自sin函数,np.sin import numpy as ...

  8. matlab练习程序(最小二乘多项式拟合)

    最近在分析一些数据,就是数据拟合的一些事情,用到了matlab的polyfit函数,效果不错. 因此想了解一下这个多项式具体是如何拟合出来的,所以就搜了相关资料. 这个文档介绍的还不错,我估计任何一本 ...

  9. numpy多项式拟合

    关于解决使用numpy.ployfit进行多项式拟合的时候请注意数据类型,解决问题的思路就是统一把数据变成浮点型,就可以了.这是numpy里面的一个bug,非常low希望后面改善. # coding: ...

随机推荐

  1. kindeditor配合requirejs使用时,ready失效

    KindEditor官方的文档在使用KindEditor时是这样的: KindEditor.ready(function(K)) { K.create('#editor_id'); } 使用了自己提供 ...

  2. MySQL my.cnf 配置文件注释

    以下是my.cnf配置文件参数解释 [client] port                     = 3309socket                   = /home/longxiben ...

  3. vmware迁移到openstack的一些坑

    title: 安全平台迁移 tags: 新建,模板,小书匠 grammar_cjkRuby: true --- 前言 主要有三个坑: 一是如果原先虚拟机没有安装virtio驱动,要设置设备驱动为ide ...

  4. 蚂蚁代理免费代理ip爬取(端口图片显示+token检查)

    分析 蚂蚁代理的列表页大致是这样的: 端口字段使用了图片显示,并且在图片上还有各种干扰线,保存一个图片到本地用画图打开观察一下: 仔细观察蓝色的线其实是在黑色的数字下面的,其它的干扰线也是,所以这幅图 ...

  5. Throughtput收集器

    介绍 JVM里面的Throughtput收集器是一款关注吞吐量的垃圾收集器.该收集器是唯一一个实现了UseAdaptiveSizePolicy策略的收集器,允许用户通过指定最大暂停时间和垃圾收集时间占 ...

  6. Swift基础之自定义PUSH和POP跳转动画

    之前用OC代码写过PUSH和POP的转场动画,闲来无事,将其转换成Swift语言,希望对大家有帮助,转载请注明.... 如何实现PUSH和POP的转场动画? 首先,创建一个NSObject的类,分别用 ...

  7. 1.Cocos2dx 3.2中vector,ValueMap,Touch触摸时间的使用.iconv字符编解码

     Cocos2dx3.2以后使用Vector<T>代替了CCArray.案例如下: 头文件:T02Vector.h #ifndef __T02Vector_H__ #define __ ...

  8. 【Netty源码分析】客户端connect服务端过程

    上一篇博客[Netty源码分析]Netty服务端bind端口过程 我们介绍了服务端绑定端口的过程,这一篇博客我们介绍一下客户端连接服务端的过程. ChannelFuture future = boos ...

  9. 密码学Hash函数

    定义: Hash函数H将可变长度的数据块M作为输入,产生固定长度的Hash值h = H(M). 称M是h的原像.因为H是多对一的映射,所以对于任意给定的Hash值h,对应有多个原像.如果满足x≠y且H ...

  10. FFmpeg源代码简单分析:configure

    ===================================================== FFmpeg的库函数源代码分析文章列表: [架构图] FFmpeg源代码结构图 - 解码 F ...