Data Mining: SSE,MSE,RMSE,R-square指标讲解
转载自:http://blog.csdn.net/l18930738887/article/details/50629409
SSE(和方差、误差平方和):The sum of squares due to error
MSE(均方差、方差):Mean squared error
RMSE(均方根、标准差):Root mean squared error
R-square(确定系数):Coefficient of determination
Adjusted R-square:Degree-of-freedom adjusted coefficient of determination
一、SSE(和方差)
该统计参数计算的是拟合数据和原始数据对应点的误差的平方和,计算公式如下
SSE越接近于0,说明模型选择和拟合更好,数据预测也越成功。接下来的MSE和RMSE因为和SSE是同出一宗,所以效果一样
二、MSE(均方差)
该统计参数是预测数据和原始数据对应点误差的平方和的均值,也就是SSE/n,和SSE没有太大的区别,计算公式如下
三、RMSE(均方根)
该统计参数,也叫回归系统的拟合标准差,是MSE的平方根,就算公式如下
在这之前,我们所有的误差参数都是基于预测值(y_hat)和原始值(y)之间的误差(即点对点)。
四、R-square(确定系数)
在讲确定系数之前,我们需要介绍另外两个参数SSR和SST,因为确定系数就是由它们两个决定的
(1)SSR:Sum of squares of the regression,即预测数据与原始数据均值之差的平方和,公式如下
(2)SST:Total sum of squares,即原始数据和均值之差的平方和,公式如下
可以观察到,SST=SSE+SSR,而我们的“确定系数”是定义为SSR和SST的比值,故
其实“确定系数”是通过数据的变化来表征一个拟合的好坏。由上面的表达式可以知道“确定系数”的正常取值范围为[0 1],越接近1,表明方程的变量对y的解释能力越强,这个模型对数据拟合的也较好
Data Mining: SSE,MSE,RMSE,R-square指标讲解的更多相关文章
- SSE,MSE,RMSE,R-square指标讲解
SSE(和方差.误差平方和):The sum of squares due to errorMSE(均方差.方差):Mean squared errorRMSE(均方根.标准差):Root mean ...
- SSE,MSE,RMSE,R-square 指标讲解
SSE(和方差.误差平方和):The sum of squares due to error MSE(均方差.方差):Mean squared errorRMSE(均方根.标准差):Root mean ...
- 莫队算法 Gym - 100496D Data Mining
题目传送门 /* 题意:从i开始,之前出现过的就是之前的值,否则递增,问第p个数字是多少 莫队算法:先把a[i+p-1]等效到最前方没有它的a[j],问题转变为求[l, r]上不重复数字有几个,裸莫队 ...
- 衡量线性回归法的指标MSE, RMSE,MAE和R Square
衡量线性回归法的指标:MSE, RMSE和MAE 举个栗子: 对于简单线性回归,目标是找到a,b 使得尽可能小 其实相当于是对训练数据集而言的,即 当我们找到a,b后,对于测试数据集而言 ,理所当然, ...
- 【笔记】衡量线性回归法的指标 MSE,RMS,MAE以及评价回归算法 R Square
衡量线性回归法的指标 MSE,RMS,MAE以及评价回归算法 R Square 衡量线性回归法的指标 对于分类问题来说,我们将原始数据分成了训练数据集和测试数据集两部分,我们使用训练数据集得到模型以后 ...
- Machine Learning and Data Mining(机器学习与数据挖掘)
Problems[show] Classification Clustering Regression Anomaly detection Association rules Reinforcemen ...
- 论文翻译:Data mining with big data
原文: Wu X, Zhu X, Wu G Q, et al. Data mining with big data[J]. IEEE transactions on knowledge and dat ...
- What is the most common software of data mining? (整理中)
What is the most common software of data mining? 1 Orange? 2 Weka? 3 Apache mahout? 4 Rapidminer? 5 ...
- 18 Candidates for the Top 10 Algorithms in Data Mining
Classification============== #1. C4.5 Quinlan, J. R. 1993. C4.5: Programs for Machine Learning.Morga ...
随机推荐
- Unity3D 自动寻路入门指南
所有用于成为NavMesh的网格都必须被指定为 Navigation Static . 方法如下,选中GameObject,然后在菜单栏的[Window]-[Navigation]-[Object]- ...
- 重构代码 —— 函数即变量(Replace temp with Query)
函数即变量,这里的函数指的是返回值为某一对象的函数.Replace temp with query,query 是一种查询函数. example 1 double price() { return t ...
- HDU4585 Shaolin (STL和treap)
Shaolin HDU - 4585 Shaolin temple is very famous for its Kongfu monks.A lot of young men go to ...
- 转载:关于消息队列的使用----ActiveMQ,RabbitMQ,ZeroMQ,Kafka,MetaMQ,RocketMQ
转载: http://blog.csdn.net/konglongaa/article/details/52208273
- Linux命令学习(19):ping命令
版权声明 更新:2017-06-13博主:LuckyAlan联系:liuwenvip163@163.com声明:吃水不忘挖井人,转载请注明出处! 1 文章介绍 本文介绍了Linux下面的ping命令. ...
- LeetCode Number of Longest Increasing Subsequence
原题链接在这里:https://leetcode.com/problems/number-of-longest-increasing-subsequence/description/ 题目: Give ...
- mongodb所在目录空间不足解决方法
1.原理是将目录/home/aa软连接到/usr/lib/下,以后从/usr/lib下读取的内容其实都是放在/home/aa下. 建议不要大范围动/usr下的内容,咋着也是属于系统目录,可能会对已装软 ...
- Vue forms
Vue forms Vue 的表单. 表单中的数据和是双向绑定的. 你可以使用 v-model 对控件元素进行数据双向绑定. 比较有用的修饰符 .lazy .number .trim
- gitlab init project
Command line instructions Git global setup git config --global user.name "zxpo" git config ...
- 把ASM下的HDD VM转换成ARM下Managed Disk的SSD VM
在ASM下,要把HDD的VM转换成SSD的VM步骤非常复杂.需要手工把Disk从普通存储账户复制到高级存储账户.再通过这个Disk创建VM. 目前在有了ASM到ARM的迁移工具,以及Managed D ...