题意:

给定字符串。求字符串中的最长回文序列

解题思路:

manacher 算法

时间复杂度:O(N)

代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
#define MAXN 110010
using namespace std;
char b[MAXN],a[MAXN<<1];
int p[MAXN<<1];
int n;
int main(){
while(scanf("%s",&b[1])!=EOF){
int i;
for(i=1;b[i]!='\0';++i){
a[(i<<1)]=b[i];
a[(i<<1)+1]='#';
}
a[0]='?';
a[1]='#';
n=(i<<1)+2;
a[n]=0;
int MaxId,MaxL,id;
MaxId=MaxL=0;
memset(p,0,sizeof(p));
for(int i=1;i<n;++i){
if(MaxId>i)
p[i]=min(p[2*id-i],MaxId-i);
else
p[i]=1;
while(a[i+p[i]]==a[i-p[i]])
p[i]++;
if(p[i]+i>MaxId)
{
MaxId=p[i]+i;
id=i;
}
if(p[i]>MaxL)
MaxL=p[i];
}
printf("%d\n",MaxL-1);
}
return 0;
}

hdu3068 最长回文(manacher 算法)的更多相关文章

  1. hdu3068最长回文(Manacher算法)

    简单来说这是个很水的东西.有点dp的思想吧.推荐两个博客,很详细. http://blog.csdn.net/xingyeyongheng/article/details/9310555 http:/ ...

  2. HDU3068 最长回文 Manacher算法

    Manacher算法是O(n)求最长回文子串的算法,其原理很多别的博客都有介绍,代码用的是clj模板里的,写的确实是异常的简洁,现在的我只能理解个大概,下面这个网址的介绍比较接近于这个模板,以后再好好 ...

  3. [hdu3068 最长回文]Manacher算法,O(N)求最长回文子串

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3068 题意:求一个字符串的最长回文子串 思路: 枚举子串的两个端点,根据回文串的定义来判断其是否是回文 ...

  4. hdu 3068 最长回文 manacher算法(视频)

    感悟: 首先我要Orz一下qsc,我在网上很难找到关于acm的教学视频,但偶然发现了这个,感觉做的很好,链接:戳戳戳 感觉这种花费自己时间去教别人的人真的很伟大. manacher算法把所有的回文都变 ...

  5. hdu_3068 最长回文(Manacher算法)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3068 最长回文 Time Limit: 4000/2000 MS (Java/Others)    M ...

  6. HDU3068 最长回文 MANACHER+回文串

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=3068 Problem Description 给出一个只由小写英文字符a,b,c...y,z组成的字符 ...

  7. hdu-3068-最长回文(manacher算法模板)

    题目链接 /* Name:hdu-3068-最长回文 Copyright: Author: Date: 2018/4/24 16:12:45 Description: manacher算法模板 */ ...

  8. hdu3068 最长回文 manacher

    给出一个只由小写英文字符a,b,c...y,z组成的字符串S,求S中最长回文串的长度.回文就是正反读都是一样的字符串,如aba, abba等 manacher裸题 #include<stdio. ...

  9. HDU 3068 最长回文 manacher 算法,基本上是O(n)复杂度

    下面有别人的比较详细的解题报告: http://wenku.baidu.com/view/3031d2d3360cba1aa811da42.html 下面贴我的代码,注释在代码中: #include ...

  10. HDU 3068 最长回文 Manacher算法

    Manacher算法是个解决Palindrome问题的O(n)算法,能够说是个超级算法了,秒杀其它一切Palindrome解决方式,包含复杂的后缀数组. 网上非常多解释,最好的解析文章当然是Leetc ...

随机推荐

  1. What is a fully qualified domain name (FQDN)?

    fully qualified domain name (FQDN) is the complete domain name for a specific computer, or host, on ...

  2. DirectoryServicesCOMException

    捕捉到 System.DirectoryServices.DirectoryServicesCOMException Message=该服务器不愿意处理该请求. Source=System.Direc ...

  3. homebrew代理设置

    方法一 brew用curl下载,所以给curl挂上socks5的代理即可. 在~/.curlrc文件中输入代理地址即可. socks5 = "127.0.0.1:1080" 方法二 ...

  4. 分享三个USB抓包软件---Bus Hound,USBlyzer 和-USBTrace

    Bus Hound官方下载地址:http://perisoft.net/bushound/Bus Hound 简易使用手册:bus_hound5.0中文使用说明.pdf (246 K) 下载次数:9  ...

  5. 在CcentOS系统上将deb包转换为rpm包

    deb文件格式本是ubuntu/debian系统下的安装文件,那么我想要在redhat/centos/fedora中安装,需要把deb格式的软件包转化成rpm格式. 需要用到的转换工具:alien_8 ...

  6. C++ 如何得到当前进程所占用的内存呢?【转】

    使用SDK的PSAPI (Process Status Helper)中的BOOL GetProcessMemoryInfo( HANDLE Process, PPROCESS_MEMORY_COUN ...

  7. 关于hibernate中映射中有many to one等外键关联时的问题

    hibernate中的对象的3种状态的理解及导致报错object references an unsaved transient instance - save the transient insta ...

  8. Redis 命令二

    一.连接控制 QUIT 关闭连接 AUTH (仅限启用时)简单的密码验证 二.适合全体类型的命令 EXISTS key 判断一个键是否存在;存在返回 1;否则返回0; DEL key 删除某个key, ...

  9. 转:Eclipse自动补全功能轻松设置

    Eclipse自动补全功能轻松设置 || 不需要修改编辑任何文件 2012-03-08 21:29:02|  分类: Java |  标签:eclipse  自动补全  设置  |举报|字号 订阅   ...

  10. 系统重装 Windows_VHD_辅助处理工具说明文档1

    菜鸟也玩 VHD Windows VHD 辅助处理工具是一个用于创建.安装.维护 VHD 的辅助工具,把一个比较复杂的操作过程傻瓜化,使您轻松体验 VHD 的强大功能.您需要预备的就是一个准备装入 V ...