CF959C Mahmoud and Ehab and the wrong algorithm 构造
Mahmoud was trying to solve the vertex cover problem on trees. The problem statement is:
Given an undirected tree consisting of n nodes, find the minimum number of vertices that cover all the edges. Formally, we need to find a set of vertices such that for each edge (u, v) that belongs to the tree, either u is in the set, or v is in the set, or both are in the set. Mahmoud has found the following algorithm:
- Root the tree at node 1.
- Count the number of nodes at an even depth. Let it be evenCnt.
- Count the number of nodes at an odd depth. Let it be oddCnt.
- The answer is the minimum between evenCnt and oddCnt.
The depth of a node in a tree is the number of edges in the shortest path between this node and the root. The depth of the root is 0.
Ehab told Mahmoud that this algorithm is wrong, but he didn't believe because he had tested his algorithm against many trees and it worked, so Ehab asked you to find 2 trees consisting of n nodes. The algorithm should find an incorrect answer for the first tree and a correct answer for the second one.
The only line contains an integer n (2 ≤ n ≤ 105), the number of nodes in the desired trees.
The output should consist of 2 independent sections, each containing a tree. The algorithm should find an incorrect answer for the tree in the first section and a correct answer for the tree in the second. If a tree doesn't exist for some section, output "-1" (without quotes) for that section only.
If the answer for a section exists, it should contain n - 1 lines, each containing 2 space-separated integers u and v (1 ≤ u, v ≤ n), which means that there's an undirected edge between node u and node v. If the given graph isn't a tree or it doesn't follow the format, you'll receive wrong answer verdict.
If there are multiple answers, you can print any of them.
2
-1
1 2
8
1 2
1 3
2 4
2 5
3 6
4 7
4 8
1 2
1 3
2 4
2 5
2 6
3 7
6 8
In the first sample, there is only 1 tree with 2 nodes (node 1 connected to node 2). The algorithm will produce a correct answer in it so we printed - 1 in the first section, but notice that we printed this tree in the second section.
In the second sample:
In the first tree, the algorithm will find an answer with 4 nodes, while there exists an answer with 3 nodes like this: In the second tree, the algorithm will find an answer with 3 nodes which is correct:
题意:
输入一个n,代表一棵n个节点的树。有个同学提出了个猜想,他想通过删除点(删除一个点就是同时删除和它相连的所有边)来删除完所有边,他认为x=min(这棵树的奇深度的所有点的个数,这棵树的偶深度的所有点的个数),这个x就是可以删除所有边的最小的要切除的点的个数。要输出一个反例的树,然后再输出一个符合的树
思路:
可以发现1~5时,均符合结论;
当 n>=6时,我们可以这样构造:
树的深度总共就3层,而偶数层为2,奇数层为1,3。我们这样构造:
1----->3,1----->2,1------>4;
3----->5...n ;这样实际上最少操作次数为2,而该结论为3;
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize("O3")
using namespace std;
#define maxn 400005
#define inf 0x3f3f3f3f
#define INF 9999999999
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ ll qpow(ll a, ll b, ll c) {
ll ans = 1;
a = a % c;
while (b) {
if (b % 2)ans = ans * a%c;
b /= 2; a = a * a%c;
}
return ans;
} int n; int main()
{
//ios::sync_with_stdio(0);
rdint(n);
if (n == 1 || n == 2 || n == 3 || n == 4 || n == 5)cout << -1 << endl;
else {
cout << "1 3" << endl; cout << "1 2" << endl; cout << "1 4" << endl;
for (int i = 5; i <= n; i++) {
cout << 3 << ' ' << i << endl;
}
}
for (int i = 1; i < n; i++)cout << i << ' ' << i + 1 << endl;
return 0;
}
CF959C Mahmoud and Ehab and the wrong algorithm 构造的更多相关文章
- [CF959C]Mahmoud and Ehab and the wrong algorithm
解法 很简单对于n<=5举不出反例 如果n>5的话2,3,4好点连1,其他点连2 对于正面例子 直接所有点连1号点 其实就是结论题 代码: #include <cstdio> ...
- CodeForces - 862C Mahmoud and Ehab and the xor(构造)
题意:要求构造一个n个数的序列,要求n个数互不相同,且异或结果为x. 分析: 1.因为0 ^ 1 ^ 2 ^ 3 ^ ... ^ (n - 3) ^ (n - 2) ^ (0 ^ 1 ^ 2 ^ 3 ...
- codeforces 862 C. Mahmoud and Ehab and the xor(构造)
题目链接:http://codeforces.com/contest/862/problem/C 题解:一道简单的构造题,一般构造题差不多都考自己脑补,脑洞一开就过了 由于数据x只有1e5,但是要求是 ...
- 862C - Mahmoud and Ehab and the xor(构造)
原题链接:http://codeforces.com/contest/862/problem/C 题意:给出n,x,求n个不同的数,使这些数的异或和为x 思路:(官方题解)只有n==2&&am ...
- CF 959 E. Mahmoud and Ehab and the xor-MST
E. Mahmoud and Ehab and the xor-MST https://codeforces.com/contest/959/problem/E 分析: 每个点x应该和x ^ lowb ...
- CF 862A Mahmoud and Ehab and the MEX【数组操作】
A. Mahmoud and Ehab and the MEX time limit per test 2 seconds memory limit per test 256 megabytes in ...
- CF862B Mahmoud and Ehab and the bipartiteness 二分图染色判定
\(\color{#0066ff}{题目描述}\) 给出n个点,n-1条边,求再最多再添加多少边使得二分图的性质成立 \(\color{#0066ff}{输入格式}\) The first line ...
- codeforces-473D Mahmoud and Ehab and another array construction task (素数筛法+贪心)
题目传送门 题目大意:先提供一个数组,让你造一个数组,这个数组的要求是 1 各元素之间都互质 2 字典序大于等于原数组 3 每一个元素都大于2 思路: 1.两个数互质的意思就是没有公因子.所以每 ...
- Coderfroces 862 C. Mahmoud and Ehab and the xor
C. Mahmoud and Ehab and the xor Mahmoud and Ehab are on the third stage of their adventures now. As ...
随机推荐
- 2015.1.10 解决DataGridView SelectionChanged事件自动触发问题
DataGridView SelectionChanged事件总是在数据源更改时自动触发,这点很讨厌. 可用CellClick和KeyUp事件和一个函数替代SelectionChanged事件 pri ...
- java 字符串和集合互相转换
今天在写项目的时候遇到一个问题,就是要把得到的一个集合转换成字符串,发现 import org.apache.commons.lang.StringUtils; 有这么一个简单的方法:String s ...
- SQLServer SDK
https://www.cnblogs.com/Leo_wl/p/3451865.html 回到目录 SQLSERVER一些公用DLL的作用解释 如果你的SQLSERVER安装在C盘的话,下面的路径就 ...
- C语言学习笔记--函数
1. C 语言中的函数 (1)函数的由来: 程序 = 数据 + 算法→C 程序 = 数据 + 函数 (2)模块化程序设计 (3)C 语言中的模块 2. 面向过程的程序设计 (1)面向过程是一种以过程为 ...
- Oracle pl/sql 显示游标和隐式游标
显示游标 一.定义语法: CURSOR <游标名> IS <SELECT 语句> [FOR UPDATE | FOR UPDATE ...
- 安装Oracle 11.2.0.3 Client Win 32-bit
第一步:安装Oracle 11.2 32-bit数据库1.双击setup文件,进入安装界面 2.选择跳过升级选项 3.设置oracle安装根目录 4.确认选项,没有问题点击“安装” 第二步:创建数据库
- gearman安装问题总结
解决configure: WARNING: You will need re2c 0.13.4 or later if you want to regenerate PHP parsers. yum ...
- [转载]HTTP的无状态是什么意思?
文章地址:https://www.cnblogs.com/bellkosmos/p/5237146.html#commentform 作者:赛艇队长 引子: 最近在好好了解http,发现对介绍http ...
- 用fontcreator创建了一个半成品的字体
下效果,哈哈. 为啥说半成品呢?因为只制作了0到9这几个字符,其他的字母.汉字.符号啥的都没有制作,唯一感觉就是字体设计是一个非常有设计感的活儿,而且需要付出很多的精力,尤其是汉字字体,常见的有6k多 ...
- R: 用 R 查看、管理文件(夹)
文件管理主要函数: list.files( ): 查看当前目录下文件. file.show( ): 显示文件. file.access( ): 查看文件是否可读可写. file.create( ): ...