ZROI2018提高day1t1
分析
在考场上我通过画图发现了对于n个点肯定用一个六边形围起来最优(假装四边形是特殊的六边形),我们发现可以将这个六边形分成两个梯形(梯形的高可以为0),然后我们便枚举两个梯形共同的底边和它们分别的高。代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<ctime>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
const int inf = 2e9+;
int main(){
int n,m,i,j,k;
for(n=;n<=;n++){
int ans=inf;
int h1,h2,w;
for(h1=;h1<=n;h1++)
for(h2=;h2<=n;h2++)
for(w=;w<=n;w++)
if(h1*(*w-h1+)+h2*(*w-h2+)-*w>=*n)
ans=min(ans,*w+h1+h2+);
printf("%d\n",ans);
}
return ;
}
通过这个代码我们可以打出一张表,大致如下:
6
8 9 10 11 12 12
13 14 14 15 15 16 16 17 17 18 18 18
19 19 20 20 20 21 21 21 22 22 22 23 23 23 24 24 24 24
于是我们发现每一行的个数分别为1,6,2*6,3*6......,而所有的数都是连续的,对于第i行这一行第一个数有i-2个,最后一个数有i个,其余的数每个均有i-1个。这样我们便可以求出n在哪一行然后暴力搞了。由于总行数最多有√n个,而每一行的数也很少,所以在找到这个规律之后直接搞就行了。注意特判n=1的情况。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<ctime>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
const int inf = 2e9+;
int Ans[];
int main(){
int n,m,i,j=,k;
scanf("%d",&n);
if(n==){
puts("");
return ;
}
for(i=;i<=;i++)
if(*i*(i-)+>=n){
k=i;
break;
}
int la=(k-)*+;
if(k==)la=;
n-=(+*(k-)*(k-));
for(i=;i<=max(k-,);i++)
Ans[i]=la;
la++;
int sum=;
for(i=max(k-,)+;i<=(k-)*-k;i++){
sum++;
if(sum==k)sum=,la++;
Ans[i]=la;
}
la++;
for(i=(k-)*-k+;i<=(k-)*;i++)Ans[i]=la;
printf("%d\n",Ans[n]);
return ;
}
ZROI2018提高day1t1的更多相关文章
- ZROI2018提高day9t1
传送门 分析 我们首先想到的自然是根据大小关系建图,在这之后我们跑一遍拓扑排序 但是由于l和r的限制关系我们需要对传统的拓扑排序做一些改变 我们考虑将所有入度为0且现在的拓扑序号已经大于等于l的点放入 ...
- ZROI2018提高day6t2
传送门 分析 将所有字母分别转化为1~26,之后将字符串的空位补全为0,?设为-1,我们设dp[p][c][le][ri]表示考虑le到ri个字符串且从第p位开始考虑,这一位最小填c的方案数,具体转移 ...
- ZROI2018提高day6t1
传送门 分析 我们发现这个四元组可以分解成一个逆序对拼上一个顺序对,这个线段树搞搞然后乘一下就可以求出来了,但是我们发现可能有(a,b)为逆序对且(b,c)为顺序对的情况,所以要进行容斥,我们只需要枚 ...
- ZROI2018提高day5t3
传送门 分析我们可以根据性质将这个序列构造成一个环:0,a[1~n],0,a[n~1] 这中间的0是为了起间隔作用的. 我们又知道b[i]=a[i-1]^a[i+1] c[i]=b[i-1]^b[i+ ...
- ZROI2018提高day5t2
传送门 分析 考场上傻了,写了个树剖还莫名weila...... 实际就是按顺序考虑每个点,然后从他往上找,一边走一边将走过的边染色,如果走到以前染过色的边就停下.对于每一个a[i]的答案就是之前走过 ...
- ZROI2018提高day5t1
传送门 分析 我们不难将条件转换为前缀和的形式,即 pre[i]>=pre[i-1]*2,pre[i]>0,pre[k]=n. 所以我们用dp[i][j]表示考虑到第i个数且pre[i]= ...
- ZROI2018提高day4t3
传送门 分析 我们假设如果一个点是0则它的值为-1,如果一个点是1则值为1,则一个区间的答案便是max(pre[i]+sur[i]),这里的pre[i]表示此区间i点和它之前的的前缀的最大值,sur[ ...
- ZROI2018提高day4t2
传送门 分析 我们二分球的直径,然后就像奶酪那道题一样,将所有距离相遇直径的点用并查集连在一起,然后枚举所有与上边的顶距离小于直径的点和所有与下边的距离小于直径的点,如果它们被并查集连在一起则代表这个 ...
- ZROI2018提高day4t1
传送门 分析 一道贪心题,我们用两个优先队列分别维护卖出的物品的价格和买入但没有卖出的物品的价格,然后逐一考虑每一个物品.对于每一个物品如果他比卖出的物品中的最低个价格,则改将现在考虑的物品卖出,将之 ...
随机推荐
- 面试题42:翻转单词顺序VS左旋转字符串
题目一:输入一个英文句子,翻转句子中单词的顺序,但单词内字符的顺序不变.为简单起见,标点符号和普通字母一样处理. 例如输入字符串“I am a student.",则输出"stud ...
- 在OpenCV2.2后的版本中没有CvvImage类的解决方法(及出现错误:IntelliSense: 未定义标识符 "CvvImage" )
首先在你的解决方案资源管理器中的头文件和源文件下分别添加 CvvImage.cpp 如下图: view类头上加个#include "CvvImage.h" 头文件,应该就可以解决 ...
- group by 和 聚合函数
1.在oracle中 select * from Table group by id 会报错. 会报不是group by 表达式.为什么一定不能是 * ,而必须是分组的列或者某个列的聚合函数. 在my ...
- LintCode Sliding Window Matrix Maximum
原题链接在这里:http://www.lintcode.com/zh-cn/problem/sliding-window-matrix-maximum/ 题目: Given an array of n ...
- 从内存中直接运行PE程序
效果是这样的,假设一个PE数据在内存里面了,我们利用下面我讲的技术可以直接建立一个进程并运行这个PE,当然直接在本进程运行在可以,这两钟技术在前些时日我都有实现,今天我只说关于建立进程并运行的,当然, ...
- 洛谷【AT2827】LIS
浅谈\(DP\):https://www.cnblogs.com/AKMer/p/10437525.html 题目传送门:https://www.luogu.org/problemnew/show/A ...
- nginx错误
在开发的时候遇到nginx错误 网上找了半天也没有找到解决方案: 先查看了一下nginx错误日志 cat /usr/local/nginx/logs/error.log 然后发现看不太懂 那么只能重启 ...
- shell脚本 - 快速到达目录
服务器中存放很多工程目录,通过ssh登录,需要手动敲命令,很麻烦,可以建立自动登录脚本 1.在服务器登录是默认的目录中建立脚本文件 vi drivers.sh #建立登录脚本 cd data/work ...
- git教程(远程仓库和管理分支)
在github上新建了一个仓库,然后相与本地的仓库联系起来 $ Git remote add origin https://github.com/liona329/learngit.git fatal ...
- java--构造器与static
原本无显示编码构造器,则有一个默认的隐式(隐藏的无参构造器),但是,当显示指定了构造器,则这个默认隐式的构造器将不存在,比如此时无法new无参的构造器(除非显示地编写声明无参的构造函数). 如果子类构 ...