剑指offer:二维数组中的查找
题目
题目链接
剑指offer:二维数组中的查找
题目描述
在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。
解题思路
这题解题的关键在于数据是有序的,很自然的便想到使用二分法;在提交后在评论区发现了更优的解法(除了数据有序外,利用了数据按矩阵形式排列这一特点),会在下列代码中给出。
在使用二分法时,值得注意的是,不能将二维数组中所有元素看作单调递增排列的一维数组,从而对所有元素整体进行二分。题目仅说明数据在矩阵的每行每列各自具单调递增的性质;而行(或列)之间并没有确定的大小关系。例如,第一行可能是[4, 5, 6], 而第二行为[1, 2, 3],第二行元素可能小于第一行元素。
具体代码
1. 二分法
因为只能逐行进行二分,故算法时间复杂度为O(nlogm),n为矩阵行数,m为列数。
计算二分的中值mid时,推荐使用mid = (right - left) / 2 + left而不是mid = (left + right) / 2 ,这样能够避免加法溢出
class Solution {
public:
bool Find(int target, vector<vector<int> > array) {
// 求出矩阵行数row和列数col
int row = array.size();
int col = array[0].size();
int left;
int right;
int mid;
// 对数组逐行进行二分查找
for (int i = 0; i < row; i++) {
left = 0;
right = col - 1;
while (right >= left) {
mid = (right - left) / 2 + left; // 防止left+right导致加法溢出
if (array[i][mid] < target) {
left = mid + 1;
} else if (array[i][mid] > target) {
right = mid - 1;
} else {
return true;
}
}
}
return false;
}
};
2. 利用元素特殊的排列
利用元素排列的性质,对于左下角的元素来说,其同列上方的元素一定是小于它,其同行右方的元素一定是大于它;能够在推导的过程中跳过更多的错误元素。易知,算法时间复杂度为O(n+m)
class Solution {
public:
bool Find(int target, vector<vector<int> > array) {
// 求出矩阵行数row和列数col
int row = array.size();
int col = array[0].size();
// 初始从矩阵左下方开始查找
for (int i = row - 1, j = 0; i >= 0 && j < col; ) {
// 分三种情况
// 1. 当前位置元素大于目标位置元素,位置上移一行(i--)
// 2. 当前位置元素小于目标位置元素,位置右移一列(j++)
// 3. 当前位置元素等于目标位置元素,已找到,返回true
if (target < array[i][j]) {
i--;
} else if (target > array[i][j]) {
j++;
} else {
return true;
}
}
return false;
}
};
剑指offer:二维数组中的查找的更多相关文章
- (java)剑指offer二维数组中的查找
在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从 上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数. pu ...
- 剑指Offer 二维数组中的查找
题目描述 在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数. 思路法一: * 矩阵是 ...
- 剑指Offer——二维数组中的查找
题目描述: 在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数. 分析: 因为二维数组 ...
- 剑指offer—二维数组中的查找
题目描述 在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数 ...
- 用js刷剑指offer(二维数组中的查找)
题目描述 在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数 ...
- 牛客网-剑指Offer 二维数组中的查找
题目描述 在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数 ...
- 剑指Offer_4_二维数组中的查找
题目描述 在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数. ...
- 面试题5-[剑指offer] 二维数组中的查找
题目 在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数. ...
- 剑指offer--1.二维数组中的查找
题目:在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数. ...
- C#版剑指Offer-001二维数组中的查找
题目描述 在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数 ...
随机推荐
- Python学习之路——基础1
python作为一门解释型的编程语言,和c/c++等其他语言都或多或少有相通的地方,所以有语言基础的话,学起来还是方便一些.所以我的笔记对于相对简单的概念可能会选择放过,但对自己记录的东西我会力求完备 ...
- Python——并发编程
开始说并发编程之前,最好有一定的底层知识积累,这里我把需要的知识总结了一下,如果看下面的有不理解的可以看一下:https://www.cnblogs.com/kuxingseng95/p/941820 ...
- java 打印流 递归复制子文件子文件夹 不同编码文件复制到同一文件中 序列化流反序列化流
package com.swift.jinjie; import java.io.BufferedInputStream; import java.io.File; import java.io.Fi ...
- Status bar - iOS之状态栏
(一)设置状态栏显示和隐藏 1.通过 Info.plist 文件增加字段,控制状态栏全局显示和隐藏 在 Info.plist 文件中增加字段 Status bar is initially hidde ...
- Linux常见文件管理命令
1.Linux上的文件管理类命令都有哪些,其常用的使用方法及其相关示例演示.(1)目录管理命令——ls:列出指定目录下的内容格式:ls [OPTION]... [FILE]... -a:显示所有文件包 ...
- 课时27.base(掌握)
base标签就是专门用来统一的指定当前网页中所有的超链接(a标签)需要如何打开 格式 <base target="_blank"> <a href="h ...
- sql xml扩展字段 查询语句
[cms:sql query="SELECT ContentXML.value('/fields[1]/Address[1]','varchar(max)')AS valueForm FRO ...
- HTML+CSS : 笔记整理(2 常规流,BFC,固定定位,z-index)
BFC和常规流的关系是什么:常规流遵循BFC,IFC规则. 定位规则总体来说三种: 常规流,浮动,绝对定位(CSS3里面新加了一种flex) 其中常规流包括BFC,IFC等规则,块级元素一个一排地从上 ...
- 【PHP基础】序列化serialize()与反序列化unserialize()
序列化serialize()与反序列化unserialize(): 序列化serialize():就是将一个变量所代表的 “内存数据”转换为“字符串”的形式,并持久保存在硬盘(写入文件中保存)上的一种 ...
- kivy学习一:安装kivy模块
现在是看脸的时代,一个程序没有一个漂亮的UI,就像一个深闺中的美女没人欣赏. 当然作为一个小小.............白,没有那么高的要求,当前要先有脸是不? 首选python自家的模块tkinte ...