题目:

墨墨突然对等式很感兴趣,他正在研究\(a_1x_1+a_2y_2+ ... +a_nx_n=B\)存在非负整数解的条件,他要求你编写一个程序,给定\(N,\{a_n\}\)以及\(B\)的取值范围,求出有多少\(B\)可以使等式存在非负整数解。

题解:

首先我们发现 : 如果我们能够通过选取一些数凑到\(x\),那么我们肯定能够凑到$x + a_1 ,x + 2a_1 ,x + 3a_1, ... \(
所以我们考虑在\)mod a_1\(的剩余系下进行操作.
记\)f[x]\(表示取到可以用\)k*a_1 + x\(表示的数的最小的\)k$

这个dp我们可以直接利用最短路算法求解.

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
inline void read(ll &x){
x=0;char ch;bool flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
}
const ll maxn = 500500;
const ll lim = maxn<<1;
ll a[maxn],dis[maxn],q[lim + 10],l,r,n;
bool inq[maxn];
void spfa(){
memset(dis,0x3f,sizeof dis);
l = 0;r = -1;
dis[0] = 0;q[++r] = 0;
inq[0] = true;
while(l <= r){
ll u = q[l++];
for(ll i=2;i<=n;++i){
ll v = (u + a[i]) % a[1];
if( dis[v] > dis[u] + (u+a[i])/a[1]){
dis[v] = dis[u] + (u+a[i])/a[1];
if(!inq[v]){
q[++r] = v;
inq[v] = true;
}
}
}inq[u] = false;
}
}
inline ll calc(ll x){
ll ret = 0;
for(ll i=0;i<a[1];++i){
ret += max((x/a[1] + ((x % a[1]) >= i)) - dis[i],0LL);
}return ret;
}
int main(){
ll L,R;read(n);read(L);read(R);
ll pos = 0;
for(ll i=1;i<=n;++i){
read(a[i]);
if(pos == 0 || a[pos] > a[i]) pos = i;
}swap(a[pos],a[1]);
if(a[1] == 0) return puts("0");
spfa();
printf("%lld\n",calc(R) - calc(L-1));
getchar();getchar();
return 0;
}

bzoj 2118: 墨墨的等式 spfa的更多相关文章

  1. 【BZOJ 2118】 墨墨的等式(Dijkstra)

    BZOJ2118 墨墨的等式 题链:http://www.lydsy.com/JudgeOnline/problem.php?id=2118 Description 墨墨突然对等式很感兴趣,他正在研究 ...

  2. 【BZOJ 2118】墨墨的等式

    http://www.lydsy.com/JudgeOnline/problem.php?id=2118 最短路就是为了找到最小的$x$满足$x=k×a_{min}+d,0≤d<a_{min}$ ...

  3. 数论+spfa算法 bzoj 2118 墨墨的等式

    2118: 墨墨的等式 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1283  Solved: 496 Description 墨墨突然对等式很感兴 ...

  4. bzoj 2118 墨墨的等式 - 图论最短路建模

    墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. Input ...

  5. 【BZOJ 2118】 2118: 墨墨的等式 (最短路)

    2118: 墨墨的等式 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求 ...

  6. bzoj 2118: 墨墨的等式

    Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+-+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...

  7. [图论训练]BZOJ 2118: 墨墨的等式 【最短路】

    Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...

  8. 【BZOJ2118】墨墨的等式(最短路)

    [BZOJ2118]墨墨的等式(最短路) 题面 BZOJ 洛谷 题解 和跳楼机那题是一样的. 只不过走的方式从\(3\)种变成了\(n\)种而已,其他的根本没有区别了. #include<ios ...

  9. BZOJ2118: 墨墨的等式(同余类BFS)(数学转为图论题)

    2118: 墨墨的等式 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2944  Solved: 1206[Submit][Status][Discu ...

随机推荐

  1. 1. lvs+keepalived 高可用群集

    一. keepalived 工具介绍 1.专为lvs 和HA 设计的一款健康检查工具 2.支持故障自动切换 3.支持节点健康状态检查 二.  keepalived 实现原理剖析 keepalived ...

  2. 洛谷P2661 信息传递==coedevs4511 信息传递 NOIP2015 day1 T2

    P2661 信息传递 题目描述 有n个同学(编号为1到n)正在玩一个信息传递的游戏.在游戏里每人都有一个固定的信息传递对象,其中,编号为i的同学的信息传递对象是编号为Ti同学. 游戏开始时,每人都只知 ...

  3. EasyNVR无插件直播服务器软件接口调用返回“Unauthorized”最简单的处理方式

    背景需求 对于EasyNVR的受众群体十分的广泛,不仅仅有将EasyNVR作为视频直播平台直接使用的,更多的是使用EasyNVR的对应功能集成到自身系统.对于前者,只需要将软件的使用功能搞清楚即可,对 ...

  4. douban_转自熊博网——牛逼顿

    转自熊博网——牛逼顿 来自: 天云之叶(大道易得,小术难求) 2010-04-21 18:32:27 牛逼顿 作者:singularitys 3月28号是牛顿的忌日,但是知道的人很少,我们毕竟更关心沈 ...

  5. BZOJ1505: [NOI2004]小H的小屋

    BZOJ1505: [NOI2004]小H的小屋 Description 小H发誓要做21世纪最伟大的数学家.他认为,做数学家与做歌星一样,第一步要作好包装,不然本事再大也推不出去. 为此他决定先在自 ...

  6. 我的Android进阶之旅------>WindowManager.LayoutParams介绍

    本文转载于: http://hubingforever.blog.163.com/blog/static/171040579201175111031938/ 本文参照自: http://develop ...

  7. Symfony 使用KnpTimeBundle

    使用time_diff时出现:diff.ago.hour; 解决:1:引入"knplabs/knp-time-bundle": "^1.7",https://g ...

  8. 论文解析 "A Non-Local Cost Aggregation Method for Stereo Matching"

    传统的使用窗口的方法缺陷主要在 1.窗口外的像素不能参与匹配判断. 2.在低纹理区域很容易产生错误匹配 论文的主要贡献在代价聚类上(左右图像带匹配点/区域的匹配代价计算),目标是图像内所有点都对该点传 ...

  9. Mac下XAMPP环境中安装MySQLdb

    环境: Mac OS X. Mac下安装MySQLdb模块着实多了些步骤. 用easy_install或者pip安装时有两大问题,"mysql_config not found"和 ...

  10. 解决pod没有权限问题

    chmod 644 路径 echo $? 检测上一条命令的执行结果,如果是0则执行成功