UVA 10081 Tight numbers(POJ 2537)
直接看代码就OK。思路比较简单。就是注意概率要在转移过程中算出来。不能算成成立的方案书除以总方案数(POJ的这道题可以这么干。数据很水么。另外POJ要用%.5f,%.5lf 会WA。)
#include <map>
#include <set>
#include <list>
#include <cmath>
#include <ctime>
#include <deque>
#include <stack>
#include <queue>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <climits>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define PI 3.1415926535897932626
using namespace std;
int gcd(int a, int b) {return a % b == ? b : gcd(b, a % b);}
double dp[][];
int N,K;
void slove()
{
if (K <= ) {puts("100.00000");return;}
for (int i = ;i < ; i++) for (int j = ;j <; j++) dp[i][j]=0.0;
for (int i = ;i <= K; i++) dp[][i]=100.0/(double)(K+);
for (int i = ; i <= N; i++)
{
dp[i][] = 1.0/(double)(K+) * ( dp[i-][] + dp[i-][]);
for (int j = ; j <= K ; j++)
{
if (j == K) dp[i][j] = 1.0/(double)(K+) * (dp[i-][K] + dp[i-][K-]);
else dp[i][j] = 1.0/(double)(K+) * (dp[i-][j-] + dp[i-][j] + dp[i-][j+]);
}
}
double ans=0.0;
for (int i = ;i <= K; i ++) ans+=dp[N][i];
printf("%.5lf\n",ans);
}
int main()
{
while (scanf("%d%d",&K,&N)!=EOF)
slove();
return ;
}
UVA 10081 Tight numbers(POJ 2537)的更多相关文章
- Uva 10081 Tight words (概率DP)
Time limit: 3.000 seconds Given is an alphabet {0, 1, ... , k}, 0 <= k <= 9 . We say that a wo ...
- UVa 10006 - Carmichael Numbers
UVa 10006 - Carmichael Numbers An important topic nowadays in computer science is cryptography. Some ...
- Uva - 12050 Palindrome Numbers【数论】
题目链接:uva 12050 - Palindrome Numbers 题意:求第n个回文串 思路:首先可以知道的是长度为k的回文串个数有9*10^(k-1),那么依次计算,得出n是长度为多少的串,然 ...
- UVA.136 Ugly Numbers (优先队列)
UVA.136 Ugly Numbers (优先队列) 题意分析 如果一个数字是2,3,5的倍数,那么他就叫做丑数,规定1也是丑数,现在求解第1500个丑数是多少. 既然某数字2,3,5倍均是丑数,且 ...
- UVA - 13022 Sheldon Numbers(位运算)
UVA - 13022 Sheldon Numbers 二进制形式满足ABA,ABAB数的个数(A为一定长度的1,B为一定长度的0). 其实就是寻找在二进制中满足所有的1串具有相同的长度,所有的0串也 ...
- UVA - 136 Ugly Numbers (有关set使用的一道题)
Ugly numbers are numbers whose only prime factors are 2, 3 or 5. The sequence1, 2, 3, 4, 5, 6, 8, 9, ...
- UVA 10125 - Sumsets(POJ 2549) hash
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- Mathematics:Pseudoprime numbers(POJ 3641)
强伪素数 题目大意:利用费马定理找出强伪素数(就是本身是合数,但是满足费马定理的那些Carmichael Numbers) 很简单的一题,连费马小定理都不用要,不过就是要用暴力判断素数的方法先确定是 ...
- POJ2402/UVA 12050 Palindrome Numbers 数学思维
A palindrome is a word, number, or phrase that reads the same forwards as backwards. For example,the ...
随机推荐
- git的使用入门
写作目的: 快速的上手git版本控制+github神器进行基本的版本同步操作. 怎么做? 对于任意一个代码项目,使用git_bash进入到代码目录 如果没有进行过初始化操作:应当使用git init ...
- mysql学习第二天函数
-- 1.绝对值 select abs(-1)from dual -- 2.求平方根select sqrt(6)from dual -- 3.圆周率select pi()from dual -- 4. ...
- 在ddms 里面查看data/data里面的东西 不显示data/data
今天我要查看data/anr/tarces.txt,没办法,我只有root手机. 可是root之后,我发现还是不能查看或者导出traces.txt. 后来我才知道,root之后,文件夹权限没有变,所以 ...
- android stadio svn 使用技巧
有时候有这样的需求: 就是我一次要改很多的需求,然后代码要分开提交,那么怎么办? 提交的时候一个一个的点开看? 比如:这次改的还没有提上去,又来了一个需求,怎么区分呢 新建一个active的变化列表 ...
- Kafka安装和常用操作命令
Kafka安装: 下载kafka_2.10-0.8.2.1 1.关闭防火墙 2.修改配置文件 server.properties broker.id=1log.dirs= /usr/kafka_2. ...
- React-router4简约教程
React-router4简约教程 教程 webEmmet 17年10月 React-router和React-router-dom的选择 很多刚使用react的同学在接触到react ...
- Android学习记录(3)—Android中ContentProvider的基本原理学习总结
一.ContentProvider简介 当应用继承ContentProvider类,并重写该类用于提供数据和存储数据的方法,就可以向其他应用共享其数据.虽然使用其他方法也可以对外共享数据 ...
- Xcode 代码提示功能失效
前言: 以前好像很少碰到Xcode中代码提示出问题的情况,最近经常遇到这个问题.没有了Xcode的智能提示,发现我已完全不会写代码了. 本来想吐槽下万恶的baidu,鉴于百度前端时间的各种(贴吧.竞价 ...
- win7 64位如何共享XP上的打印机?
这个问题看似很简单,但是一旦你遇到了,就会发觉不是想象的那么简单. 除了网上能搜到的一些设置之外,这里还有几个诀窍: 1.首先你必须准备你的打印机的64位驱动程序 2.你在win7上必须采用添加本地打 ...
- python-使用unittest和ddt实现数据驱动
一.数据驱动的概念 相同测测试脚本使用不同的测试数据来执行,测试数据和测试行为完全分离,这样的测试脚本设计模式成为数据驱动.测试框架使用unittest 和ddt模块相结合的方式 二.unittest ...