Qin Shi Huang's National Road System

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6407    Accepted Submission(s): 2239

Problem Description
During
the Warring States Period of ancient China(476 BC to 221 BC), there
were seven kingdoms in China ---- they were Qi, Chu, Yan, Han, Zhao, Wei
and Qin. Ying Zheng was the king of the kingdom Qin. Through 9 years of
wars, he finally conquered all six other kingdoms and became the first
emperor of a unified China in 221 BC. That was Qin dynasty ---- the
first imperial dynasty of China(not to be confused with the Qing
Dynasty, the last dynasty of China). So Ying Zheng named himself "Qin
Shi Huang" because "Shi Huang" means "the first emperor" in Chinese.

Qin
Shi Huang undertook gigantic projects, including the first version of
the Great Wall of China, the now famous city-sized mausoleum guarded by a
life-sized Terracotta Army, and a massive national road system. There
is a story about the road system:
There were n cities in China and
Qin Shi Huang wanted them all be connected by n-1 roads, in order that
he could go to every city from the capital city Xianyang.
Although
Qin Shi Huang was a tyrant, he wanted the total length of all roads to
be minimum,so that the road system may not cost too many people's life. A
daoshi (some kind of monk) named Xu Fu told Qin Shi Huang that he could
build a road by magic and that magic road would cost no money and no
labor. But Xu Fu could only build ONE magic road for Qin Shi Huang. So
Qin Shi Huang had to decide where to build the magic road. Qin Shi Huang
wanted the total length of all none magic roads to be as small as
possible, but Xu Fu wanted the magic road to benefit as many people as
possible ---- So Qin Shi Huang decided that the value of A/B (the ratio
of A to B) must be the maximum, which A is the total population of the
two cites connected by the magic road, and B is the total length of none
magic roads.
Would you help Qin Shi Huang?
A city can be considered as a point, and a road can be considered as a line segment connecting two points.
 
Input
The first line contains an integer t meaning that there are t test cases(t <= 10).
For each test case:
The first line is an integer n meaning that there are n cities(2 < n <= 1000).
Then
n lines follow. Each line contains three integers X, Y and P ( 0 <=
X, Y <= 1000, 0 < P < 100000). (X, Y) is the coordinate of a
city and P is the population of that city.
It is guaranteed that each city has a distinct location.
 
Output
For
each test case, print a line indicating the above mentioned maximum
ratio A/B. The result should be rounded to 2 digits after decimal point.
 
Sample Input
2
4
1 1 20
1 2 30
200 2 80
200 1 100
3
1 1 20
1 2 30
2 2 40
 
Sample Output
65.00
70.00
题意:秦朝有n个城市,需要修建一些道路让任意两个城市(每个城市都有人口)都可以联通,徐福可以用用法力修一条路,这条路不需要劳动力,秦始皇希望其他的道路总长度
B尽量短,还希望连接的两个城市人口之和A尽量大,找到最大的A/B。
题解:这题的做法是去枚举每条边,如果枚举的这条边在最小生成树上,那么结果为 person[i]+person[j]/(MST-graph[i][j])
如果没在最小生成树上,那么加进去之后我们要删掉一条边,我们肯定是要i, j所在的环里面最大的边,这里就要用到次小生成树里面的path数组了. 结果为person[i]+person[j]/(MST-path[i][j])因为i - j不需要花费,所以不必再加上去.
#include <stdio.h>
#include <algorithm>
#include <string.h>
#include <math.h>
using namespace std;
typedef double type;
const int N = ;
const double INF = ;
struct Point
{
int x,y;
} p[N];
double graph[N][N];
int person[N];
int n,m;
int pre[N];
type path[N][N],low[N]; ///path[i][j]用于记录i到j路径上的权值最大的边
bool vis[N],used[N][N];
type prim(int pos,int n){
memset(used,false,sizeof(used));
memset(vis,false,sizeof(vis));
memset(path,,sizeof(path));
vis[pos]=true;
type cost = ;
for(int i=;i<=n;i++){
low[i]= graph[pos][i];
pre[i]=;
}
low[pos]=;
for(int i=;i<n;i++){
type Min = INF;
for(int j=;j<=n;j++){
if(!vis[j]&&low[j]<Min){
pos = j;
Min = low[j];
}
}
used[pre[pos]][pos] = used[pos][pre[pos]] = true;
cost+= Min;
vis[pos] = true;
for(int j=;j<=n;j++){
if(vis[j]&&j!=pos){
path[pos][j] = path[j][pos] = max(low[pos],path[j][pre[pos]]);
}
if(!vis[j]&&low[j]>graph[pos][j]){
low[j]=graph[pos][j];
pre[j] = pos;
}
}
}
return cost;
}
double dis(Point a,Point b)
{
return sqrt(1.0*((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)));
}
void init()
{
for(int i=; i<=n; i++)
{
for(int j=; j<=n; j++)
{
if(i==j) graph[i][j] = ;
else graph[i][j] = INF;
}
}
} int main()
{
int tcase;
scanf("%d",&tcase);
while(tcase--)
{
scanf("%d",&n);
init();
for(int i=; i<=n; i++)
{
scanf("%d%d%d",&p[i].x,&p[i].y,&person[i]);
}
for(int i=;i<=n;i++){
for(int j=i+;j<=n;j++){
graph[i][j] = graph[j][i] = dis(p[i],p[j]);
}
}
double MST = prim(,n);
double Max = -;
for(int i=;i<=n;i++){ ///枚举所有的边
for(int j=;j<=n;j++){
if(i!=j){
if(used[i][j]){ ///如果枚举的边属于最小生成树,那么结果为 A/(MST-此边)
Max = max(Max,(person[i]+person[j])/(MST-graph[i][j]));
}else{ ///如果枚举的边不属于最小生成树,那么必定要删掉最小生成树中的一条边,删掉的肯定就是i-j之间最长的那条
Max = max(Max,(person[i]+person[j])/(MST-path[i][j]));
}
} }
}
printf("%.2lf\n",Max);
}
return ;
}

hdu 4081(次小生成树)的更多相关文章

  1. hdu 4081 Qin Shi Huang's National Road System(次小生成树prim)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081 题意:有n个城市,秦始皇要修用n-1条路把它们连起来,要求从任一点出发,都可以到达其它的任意点. ...

  2. HDU 4081 Qin Shi Huang's National Road System 次小生成树变种

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  3. hdu 4081 Qin Shi Huang's National Road System (次小生成树)

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  4. HDU 4081 Qin Shi Huang's National Road System [次小生成树]

    题意: 秦始皇要建路,一共有n个城市,建n-1条路连接. 给了n个城市的坐标和每个城市的人数. 然后建n-2条正常路和n-1条魔法路,最后求A/B的最大值. A代表所建的魔法路的连接的城市的市民的人数 ...

  5. HDU 4081Qin Shi Huang's National Road System(次小生成树)

    题目大意: 有n个城市,秦始皇要修用n-1条路把它们连起来,要求从任一点出发,都可以到达其它的任意点.秦始皇希望这所有n-1条路长度之和最短.然后徐福突然有冒出来,说是他有魔法,可以不用人力.财力就变 ...

  6. HDU 4756 Install Air Conditioning(次小生成树)

    题目大意:给你n个点然后让你求出去掉一条边之后所形成的最小生成树. 比較基础的次小生成树吧. ..先prime一遍求出最小生成树.在dfs求出次小生成树. Install Air Conditioni ...

  7. [kuangbin带你飞]专题八 生成树 - 次小生成树部分

    百度了好多自学到了次小生成树 理解后其实也很简单 求最小生成树的办法目前遇到了两种 1 prim 记录下两点之间连线中的最长段 F[i][k] 之后枚举两点 若两点之间存在没有在最小生成树中的边 那么 ...

  8. hdu4081 次小生成树变形

    pid=4081">http://acm.hdu.edu.cn/showproblem.php?pid=4081 Problem Description During the Warr ...

  9. kuangbin带你飞 生成树专题 : 次小生成树; 最小树形图;生成树计数

    第一个部分 前4题 次小生成树 算法:首先如果生成了最小生成树,那么这些树上的所有的边都进行标记.标记为树边. 接下来进行枚举,枚举任意一条不在MST上的边,如果加入这条边,那么肯定会在这棵树上形成一 ...

随机推荐

  1. 《Cracking the Coding Interview》——第4章:树和图——题目5

    2014-03-19 04:11 题目:设计算法检查一棵二叉树是否为二叉搜索树. 解法:既然是二叉搜索树,也就是说左子树所有节点都小于根,右子树所有节点都大于根.如果你真的全都检查的话,那就做了很多重 ...

  2. Jmeter测试SOAP协议(Jmeter 3.3)

    公司协议都是SOAP协议的,最初在网上看到Jmeter测试soap协议需要插件,但是Jmeter3.2开始就不在支持该插件,后来又查了些资料,找到了解决办法,Jmeter提供专门创建针对soap协议的 ...

  3. springboot相关链接

    springboot的三种启动方式 https://blog.csdn.net/my__Sun_/article/details/72866329 springboot学历历程 https://www ...

  4. IPMITool driver

    官网链接: https://docs.openstack.org/ironic/latest/admin/drivers/ipmitool.html IPMITool driver 概述IPMI(In ...

  5. 用Python实现基于Hadoop Stream的mapreduce任务

    用Python实现基于Hadoop Stream的mapreduce任务 因为Hadoop Stream的存在,使得任何支持读写标准数据流的编程语言实现map和reduce操作成为了可能. 为了方便测 ...

  6. matlab使用摄像头人脸识别

    #关于matlab如何读取图片.视频.摄像头设备数据# 参见:http://blog.csdn.net/u010177286/article/details/45646173 但是,关于摄像头读取,上 ...

  7. linux备忘录-基本命令

    基本命令 将命令分类为获取信息类,文件管理类,目录管理类,文本处理类,系统类,工具类. 获取信息类 uname # 输出所有信息 # 一行输出,空格分割 uname -a # 输出内核名称 uname ...

  8. hadoop-hdfs(三)

    HDFS概念 1 数据块* HDFS的一个数据块默认是64M,与元数据分开管理. 优点: 数据块的大小设计的较大,所以寻址占传输的时间比例较小,只需要计算传输速度即可. 便于简化管理,利于计算剩余空间 ...

  9. PHP文件开头session_start()

    session_start(); 告诉服务器使用session.一般来说,php是不会主动使用session的. 不过可以设置php.ini中的session.auto_start=1来自动对每个请求 ...

  10. 洛谷 P2329 [SCOI2005]栅栏 解题报告

    P2329 [SCOI2005]栅栏 题目描述 农夫约翰打算建立一个栅栏将他的牧场给围起来,因此他需要一些特定规格的木材.于是农夫约翰到木材店购买木材.可是木材店老板说他这里只剩下少部分大规格的木板了 ...