http://neuralnetworksanddeeplearning.com/chap1.html

. Sigmoid neurons are similar to perceptrons, but modified so that small changes in their weights and bias cause only a small change in their output.

http://neuralnetworksanddeeplearning.com/chap3.html

// This is a paper.js widget to show a single neuron learning.  In
// particular, the widget is used to show the learning slowdown that
// occurs when the output is saturated.
//
// The same basic widget is used several times, in slightly different
// configurations. paper.js makes it somewhat complex to reuse the
// code, so I have simply duplicated the code. This can give rise to
// bugs if one is not careful to keep the code in sync, so I have
// separated the code into two pieces.
//
// The first piece is the header code. This changes between widgets.
// It sets up things like the starting weight, bias, cost function,
// and so on -- things which may vary betweens widgets.
//
// The second piece is the body code. This is almost exactly the same
// for the different widgets. Note, however, that the costGraphX and
// epochX variables change name, due to a bug in the way paperjs
// handles scope.
//
// We can make these changes by searching on costGraph1 and replacing
// with costGraph2, costGraph3 etc, by replacing epoch1 with epoch2,
// epoch3 etc, and by replcacing cost1 with cost2, cost3 etc.
//
// This separation makes it easy to maintain the duplicated code. // HEADER CODE var startingWeight = 0.6;
var startingBias = 0.9;
var eta = 0.15;
var numFrames = 300; quadratic_cost = {
fn: function(a) {return a*a/2;},
derivative: function(a) {return a*a*(1-a);},
scaling: 240 // used to scale on the graph
} cross_entropy_cost = {
fn: function(a) {return -Math.log(1-a);},
derivative: function(a) {return 1/(1-a);},
scaling: 30
} cost1 = quadratic_cost; // A path for the graph.
costGraph1 = new Path();
costGraph1.strokeColor = "#2A6EA6"; // BODY CODE // STATIC ELEMENTS
//
// Note that this includes some paper.js items which will later be
// modified, e.g., the variables output and weightText. This section
// merely sets the static parts of the elements. var input = new PointText(new Point(8, 40));
input.fontSize = 18;
input.content = "Input: 1.0"; arrow(new Point(100, 35), new Point(230, 35), 0.8); // input arrow var neuron = new Path.Circle(new Point(260, 35), 30);
neuron.strokeColor = "black"; arrow(new Point(290, 35), new Point(380, 35), 0.8); // output arrow // The output text's content will be set dynamically, later
var output = new PointText(new Point(390, 40));
output.fontSize = 18; // The weight text and bar
var weightText = new PointText(new Point(120, 52));
weightText.fontSize=14;
var weightBar = new Path.Rectangle(new Rectangle(120, 57, 90, 9));
weightBar.strokeColor = "grey";
weightBar.strokeWidth = 1;
var weightTick = new Path(new Point(165, 57), new Point(165, 71));
weightTick.strokeColor = "black";
var weightSlider = new Path.Line(
new Point(165, 61.5), new Point(165+weight*20, 61.5));
weightSlider.strokeColor = "#2A6EA6";
weightSlider.strokeWidth = 9; // The bias text and bar
var biasText = new PointText(new Point(230, 82));
biasText.fontSize = 14;
var biasBar = new Path.Rectangle(new Rectangle(230, 88, 90, 9));
biasBar.strokeColor = "grey";
biasBar.strokeWidth = 1;
var biasTick = new Path(new Point(275, 88), new Point(275, 102));
biasTick.strokeColor = "black";
var biasSlider = new Path.Line(
new Point(275, 92.5), new Point(275+bias*20, 92.5));
biasSlider.strokeColor = "#2A6EA6";
biasSlider.strokeWidth = 9; // Axes for the graph
arrow(new Point(100, 250), new Point(100, 120));
arrow(new Point(100, 250), new Point(130+numFrames/2, 250)); // Labels on the axes
var costText = new PointText(new Point(60, 145));
costText.fontSize = 18;
costText.content = "Cost"; var epoch1LabelText = new PointText(new Point(140+numFrames/2, 255));
epoch1LabelText.fontSize = 18;
epoch1LabelText.content = "Epoch"; // Marker for the current epoch
var epoch1Tick = new Path(new Point(100, 250), new Point(100, 255));
epoch1Tick.strokeColor = "black"; var epoch1Number = new PointText(new Point(100, 267));
epoch1Number.fontSize = 14;
epoch1Number.justification = "center"; // We group the epochTick and epochNumber, to make it easy to move
epoch1 = new Group([epoch1Tick, epoch1Number]); // Initialize the dynamic elements. It's convenient to do this in a
// function, so that function can also be called upon a (re)start of
// the widget. var weight, bias;
initDynamicElements(); function initDynamicElements() {
weight = startingWeight;
bias = startingBias;
weightText.content = paramContent("w = ", weight);
weightSlider.segments[1].point.x = 165+weight*20;
biasText.content = paramContent("b = ", bias);
biasSlider.segments[1].point.x = 275+bias*20;
output.content = outputContent(weight, bias);
epoch1.position.x = 100;
epoch1Number.content = "0";
costGraph1.removeSegments();
} function paramContent(s, x) {
sign = (x >= 0)? "+": "";
return s+sign+x.toFixed(2);
} // The run button var runBox = new Path.Rectangle(new Rectangle(430, 230, 60, 30), 5);
runBox.fillColor = "#dddddd"; var runText = new PointText(new Point(460, 250));
runText.justification = "center";
runText.fontSize = 18;
runText.content = "Run"; var runIcon = new Group([runBox, runText]); runIcon.onMouseEnter = function(event) {
runBox.fillColor = "#aaaaaa";
} runIcon.onMouseLeave = function(event) {
runBox.fillColor = "#dddddd";
} var playing = false;
var count = 0; runIcon.onClick = function(event) {
initDynamicElements();
this.visible = false;
weight = startingWeight;
bias = startingBias;
playing = true;
} // The actual procedure function onFrame(event) {
if (playing) {
a = outputValue(weight, bias);
delta = cost1.derivative(a);
weight += -eta*delta;
bias += -eta*delta;
weightText.content = paramContent("w = ", weight);
weightSlider.segments[1].point.x = 165+weight*20;
biasText.content = paramContent("b = ", bias);
biasSlider.segments[1].point.x = 275+bias*20;
output.content = outputContent(weight, bias);
if (count % 2 === 0) {epoch1.position.x += 1;}
costGraph1.add(new Point(epoch1.position.x, 250-cost1.scaling*cost1.fn(a)));
epoch1Number.content = count;
count += 1;
if (count > numFrames) {
count = 0;
runIcon.visible = true;
playing = false;
}
}
} function outputValue(weight, bias) {
return sigmoid(weight+bias);
} function outputContent(weight, bias) {
return "Output: "+outputValue(weight, bias).toFixed(2);
} function sigmoid(z) {
return 1/(1+Math.exp(-z));
} function arrow(point1, point2, width, color) {
if (typeof width === 'undefined') {width=1};
if (typeof color === 'undefined') {color='black'};
delta = point1 - point2;
n = delta/delta.length;
nperp = new Point(-n.y, n.x);
line = new Path(point1, point2);
line.strokeColor = color;
line.strokeWidth = width;
arrow_stroke_1 = new Path(point2, point2+(n+nperp)*6);
arrow_stroke_1.strokeWidth = width;
arrow_stroke_1.strokeColor = color;
arrow_stroke_2 = new Path(point2, point2+(n-nperp)*6);
arrow_stroke_2.strokeWidth = width;
arrow_stroke_2.strokeColor = color;
}

  

http://neuralnetworksanddeeplearning.com/js/saturation4.js

// This is a paper.js widget to show a single neuron learning.  In
// particular, the widget is used to show the learning slowdown that
// occurs when the output is saturated.
//
// The same basic widget is used several times, in slightly different
// configurations. paper.js makes it somewhat complex to reuse the
// code, so I have simply duplicated the code. This can give rise to
// bugs if one is not careful to keep the code in sync, so I have
// separated the code into two pieces.
//
// The first piece is the header code. This changes between widgets.
// It sets up things like the starting weight, bias, cost function,
// and so on -- things which may vary betweens widgets.
//
// The second piece is the body code. This is almost exactly the same
// for the different widgets. Note, however, that the costGraphX and
// epochX variables change name, due to a bug in the way paperjs
// handles scope.
//
// We can make these changes by searching on costGraph1 and replacing
// with costGraph2, costGraph3 etc, and by replacing epoch1 with
// epoch2, epoch3 etc.
//
// This separation makes it easy to maintain the duplicated code. // HEADER CODE var startingWeight = 2.0;
var startingBias = 2.0;
var eta = 0.005;
var numFrames = 300; quadratic_cost = {
fn: function(a) {return a*a/2;},
derivative: function(a) {return a*a*(1-a);},
scaling: 240 // used to scale on the graph
} cross_entropy_cost = {
fn: function(a) {return -Math.log(1-a);},
derivative: function(a) {return 1/(1-a);},
scaling: 30
} cost4 = cross_entropy_cost; // A path for the graph.
costGraph4 = new Path();
costGraph4.strokeColor = "#2A6EA6"; // BODY CODE // STATIC ELEMENTS
//
// Note that this includes some paper.js items which will later be
// modified, e.g., the variables output and weightText. This section
// merely sets the static parts of the elements. var input = new PointText(new Point(8, 40));
input.fontSize = 18;
input.content = "Input: 1.0"; arrow(new Point(100, 35), new Point(230, 35), 0.8); // input arrow var neuron = new Path.Circle(new Point(260, 35), 30);
neuron.strokeColor = "black"; arrow(new Point(290, 35), new Point(380, 35), 0.8); // output arrow // The output text's content will be set dynamically, later
var output = new PointText(new Point(390, 40));
output.fontSize = 18; // The weight text and bar
var weightText = new PointText(new Point(120, 52));
weightText.fontSize=14;
var weightBar = new Path.Rectangle(new Rectangle(120, 57, 90, 9));
weightBar.strokeColor = "grey";
weightBar.strokeWidth = 1;
var weightTick = new Path(new Point(165, 57), new Point(165, 71));
weightTick.strokeColor = "black";
var weightSlider = new Path.Line(
new Point(165, 61.5), new Point(165+weight*20, 61.5));
weightSlider.strokeColor = "#2A6EA6";
weightSlider.strokeWidth = 9; // The bias text and bar
var biasText = new PointText(new Point(230, 82));
biasText.fontSize = 14;
var biasBar = new Path.Rectangle(new Rectangle(230, 88, 90, 9));
biasBar.strokeColor = "grey";
biasBar.strokeWidth = 1;
var biasTick = new Path(new Point(275, 88), new Point(275, 102));
biasTick.strokeColor = "black";
var biasSlider = new Path.Line(
new Point(275, 92.5), new Point(275+bias*20, 92.5));
biasSlider.strokeColor = "#2A6EA6";
biasSlider.strokeWidth = 9; // Axes for the graph
arrow(new Point(100, 250), new Point(100, 120));
arrow(new Point(100, 250), new Point(130+numFrames/2, 250)); // Labels on the axes
var costText = new PointText(new Point(60, 145));
costText.fontSize = 18;
costText.content = "Cost"; var epoch4LabelText = new PointText(new Point(140+numFrames/2, 255));
epoch4LabelText.fontSize = 18;
epoch4LabelText.content = "Epoch"; // Marker for the current epoch
var epoch4Tick = new Path(new Point(100, 250), new Point(100, 255));
epoch4Tick.strokeColor = "black"; var epoch4Number = new PointText(new Point(100, 267));
epoch4Number.fontSize = 14;
epoch4Number.justification = "center"; // We group the epochTick and epochNumber, to make it easy to move
epoch4 = new Group([epoch4Tick, epoch4Number]); // Initialize the dynamic elements. It's convenient to do this in a
// function, so that function can also be called upon a (re)start of
// the widget. var weight, bias;
initDynamicElements(); function initDynamicElements() {
weight = startingWeight;
bias = startingBias;
weightText.content = paramContent("w = ", weight);
weightSlider.segments[1].point.x = 165+weight*20;
biasText.content = paramContent("b = ", bias);
biasSlider.segments[1].point.x = 275+bias*20;
output.content = outputContent(weight, bias);
epoch4.position.x = 100;
epoch4Number.content = "0";
costGraph4.removeSegments();
} function paramContent(s, x) {
sign = (x >= 0)? "+": "";
return s+sign+x.toFixed(2);
} // The run button var runBox = new Path.Rectangle(new Rectangle(430, 230, 60, 30), 5);
runBox.fillColor = "#dddddd"; var runText = new PointText(new Point(460, 250));
runText.justification = "center";
runText.fontSize = 18;
runText.content = "Run"; var runIcon = new Group([runBox, runText]); runIcon.onMouseEnter = function(event) {
runBox.fillColor = "#aaaaaa";
} runIcon.onMouseLeave = function(event) {
runBox.fillColor = "#dddddd";
} var playing = false;
var count = 0; runIcon.onClick = function(event) {
initDynamicElements();
this.visible = false;
weight = startingWeight;
bias = startingBias;
playing = true;
} // The actual procedure function onFrame(event) {
if (playing) {
a = outputValue(weight, bias);
delta = cost4.derivative(a);
weight += -eta*delta;
bias += -eta*delta;
weightText.content = paramContent("w = ", weight);
weightSlider.segments[1].point.x = 165+weight*20;
biasText.content = paramContent("b = ", bias);
biasSlider.segments[1].point.x = 275+bias*20;
output.content = outputContent(weight, bias);
if (count % 2 === 0) {epoch4.position.x += 1;}
costGraph4.add(new Point(epoch4.position.x, 250-cost4.scaling*cost4.fn(a)));
epoch4Number.content = count;
count += 1;
if (count > numFrames) {
count = 0;
runIcon.visible = true;
playing = false;
}
}
} function outputValue(weight, bias) {
return sigmoid(weight+bias);
} function outputContent(weight, bias) {
return "Output: "+outputValue(weight, bias).toFixed(2);
} function sigmoid(z) {
return 1/(1+Math.exp(-z));
} function arrow(point1, point2, width, color) {
if (typeof width === 'undefined') {width=1};
if (typeof color === 'undefined') {color='black'};
delta = point1 - point2;
n = delta/delta.length;
nperp = new Point(-n.y, n.x);
line = new Path(point1, point2);
line.strokeColor = color;
line.strokeWidth = width;
arrow_stroke_1 = new Path(point2, point2+(n+nperp)*6);
arrow_stroke_1.strokeWidth = width;
arrow_stroke_1.strokeColor = color;
arrow_stroke_2 = new Path(point2, point2+(n-nperp)*6);
arrow_stroke_2.strokeWidth = width;
arrow_stroke_2.strokeColor = color;
}

  

output value . Sigmoid neurons are similar to perceptrons, but modified so that small changes in their weights and bias cause only a small change in their output.的更多相关文章

  1. 使用神经网络识别手写数字Using neural nets to recognize handwritten digits

    The human visual system is one of the wonders of the world. Consider the following sequence of handw ...

  2. chapter1:using neural nets to recognize handwritten digits

    two important types of artificial neuron :the perceptron and the sigmoid neuron Perceptrons 感知机的输入个数 ...

  3. 提高神经网络的学习方式Improving the way neural networks learn

    When a golf player is first learning to play golf, they usually spend most of their time developing ...

  4. 神经网络和Deep Learning

    参考资料: 在线免费书籍 http://neuralnetworksanddeeplearning.com/chap1.html Chapter 1 1.  perceptron 感知机 it's a ...

  5. (六)6.16 Neurons Networks linear decoders and its implements

    Sparse AutoEncoder是一个三层结构的网络,分别为输入输出与隐层,前边自编码器的描述可知,神经网络中的神经元都采用相同的激励函数,Linear Decoders 修改了自编码器的定义,对 ...

  6. [LeetCode] Similar RGB Color 相似的红绿蓝颜色

    In the following, every capital letter represents some hexadecimal digit from 0 to f. The red-green- ...

  7. CS229 6.16 Neurons Networks linear decoders and its implements

    Sparse AutoEncoder是一个三层结构的网络,分别为输入输出与隐层,前边自编码器的描述可知,神经网络中的神经元都采用相同的激励函数,Linear Decoders 修改了自编码器的定义,对 ...

  8. Digital Adjustment of DC-DC Converter Output Voltage in Portable Applications

    http://pdfserv.maximintegrated.com/en/an/AN818.pdf http://www.maximintegrated.com/app-notes/index.mv ...

  9. Simple Addition Permits Voltage Control Of DC-DC Converter's Output

    http://electronicdesign.com/power/simple-addition-permits-voltage-control-dc-dc-converters-output In ...

随机推荐

  1. 关于Docker&kubernetes的一些问题

    本文是我自己在学习docker以及kubernetes的过程中遇到的一些问题,以及同事在听过培训之后一些问题,事后我自己去网上找些资料以及问一些资深大牛,我在此做一个归纳总结,将这些问题的解答做一个分 ...

  2. C++ 设置控制台输出颜色

    #include <stdint.h> #include <iostream> #include <string> #include <Windows.h&g ...

  3. poj 1719Shooting Contest

    //本题大意是对于一个r*c的矩阵,每一列有两个是白色的 //如今选c个位置,要求每一行至少有一个白色的方格被选上 //每一列仅仅能选一个 //用二分匹配求出最大匹配,假设最大匹配等于r,则满足 // ...

  4. Linux——学习环境搭建

    终于决定将学习环境彻底转到Linux上来,下面记录一下转移学习环境的各种软件和环境的安装和配置. 1.centos自带python2.6,之前的博文已经说到已成功更新到python3.3,下面首先安装 ...

  5. PHP实现查看邮件是否被阅读

      <? //当你在发送邮件时,你或许很想知道该邮件是否被对方已阅读.这里有段非常有趣的代码片段能够显示对方IP地址记录阅读//的实际日期和时间. error_reporting(0); Hea ...

  6. react-native 路由 react-native-router-flux

    引言 react-native-router-flux 是一个基于 react-navigation 路由框架,进一步简化了页面跳转的步骤,并且一直随着 react-navigation升级更新版本. ...

  7. jQuery异步框架探究2:jQuery.Deferred方法

    (本文针对jQuery1.6.1版本号)关于Deferred函数的描写叙述中有一个词是fledged,意为"羽翼丰满的",说明jQuery.Deferred函数应用应该更成熟. 这 ...

  8. 基于SpringMVC+Ext.js的权限管理系统(无权限框架)

    代码地址如下:http://www.demodashi.com/demo/12811.html 0.准备工作 注意!!! 本案例数据库相关请下载例子包,内有数据库脚本.EXCEL数据表和详细的设计文档 ...

  9. DICOM医学图像处理:WEB PACS初谈二,图像的传输

    背景: 如前一篇专栏博文所述,借助于CGI或FastCGI技术转发浏览器发送过来的用户请求,启动本地的DCMTK和CxImage库响应.然后将处理结果转换成常规图像返回到浏览器来实现Web PACS. ...

  10. mongoDB: cursor not found on server

    查询mongoDB集合数据更新,数据有400w多.我一次用cursor(游标)取1w,处理更新.程序在某段时间运行中遍历游标时发生异常! DBCursor cursor = tabColl.find( ...