前置知识

扩展欧几里得,快速幂

都是很基础的东西

扩展欧几里得

说实话这个东西我学了好几遍都没有懂,最近终于搞明白,可以考场现推了,故放到这里来加深印象

翡蜀定理

方程$ax+by=gcd(a,b)$一定有整数解

证明:

因为$gcd(a,b)=gcd(b,a$ $mod$ $b)$

所以假设我们已经求出来了$bx+(a$ $mod$ $b)y=gcd(b,a$ $mod$ $b)$的一组整数解$(p,q)$

因为$a$ $mod$ $b=a-(\lfloor \frac{a}{b} \rfloor \ast b)$

所以$bp+(a-a/b\ast b)q=ax+by$

$b(p-(a/b)q)+aq=ax+by$

所以$x=q,y=(p-(a/b)q)$是一组合法的解

所以我们可以递归$gcd$的过程中倒着算每一层的解

当$b=0$时的解为$x=1,y=0$

BSGS

问题提出

给定$a,b,p$,求最小的$x$,使得$a^x≡b(mod$ $p)$

问题求解

显然这个东西不能直接做

考虑分块的思想

定义$m=sqrt(p)$

设$x=i\ast m - j$

也就是$a^{i\ast m}≡a^j\ast b(mod$ $p)$

那么我们首先把$j=0...m-1$时的$a^j\ast b$插入一个哈希表

然后我们枚举$i$,在哈希表里面查询$a^{i\ast m}$有没有出现过,如果出现过,它最大的$j$是多少

然后就可以在$O(sqrt(p))$的时间内解决这个问题了

放个板子


namespace hash{
ll first[1000010],next[1000010],val[1000010],hash[1000010],mod=926081,cnt=0;
void init(){memset(first,0,sizeof(first));cnt=0;}
void insert(ll w,ll pos){
ll p=w%mod,u;
for(u=first[p];u;u=next[u]){
if(hash[u]==w){val[u]=pos;return;}
if(!next[u]) break;
}
if(!next[u]){
cnt++;
if(!first[p]) first[p]=cnt;
else next[u]=cnt;
val[cnt]=pos;hash[cnt]=w;next[cnt]=0;
}
}
ll find(ll w){
ll p=w%mod,u;
for(u=first[p];u;u=next[u]){
if(hash[u]==w) return val[u];
}
return -1;
}
}
ll qpow(ll a,ll b,ll p){
ll re=1;
while(b){
if(b&1) re=re*a%p;
a=a*a%p;b>>=1;
}
return re;
}
ll gcd(ll a,ll b){
if(b==0) return a;
return gcd(b,a%b);
}
ll bsgs(ll a,ll b,ll p){
if(b==1) return 0;
ll i,j,m=ceil(sqrt((double)p)),tmp=b,cur,base=qpow(a,m,p);
hash::init();
for(j=0;j<m;j++){
hash::insert(tmp,j);
tmp=tmp*a%p;
}
tmp=1;
for(i=m;i<=p;i+=m){
tmp=tmp*base%p;
cur=hash::find(tmp);
if(~cur) return i-cur;
}
return -1;
}

exBSGS

使用BSGS的时候要求$gcd(a,p)=1$,扩展版的exBSGS则不需要

具体操作是这样的:

除掉公约数

假设$tmp=gcd(a,p)$

那么$(y\ast tmp)^x=z\ast tmp(mod$ $q\ast tmp)$

其中$y,z,q$是新设出来的量,$y\ast tmp=a$,$z\ast tmp=b$,$q\ast tmp=p$

这一步可以看出,如果$b$不能整除$gcd(a,p)$,那么一定无解

转化

把等式两边的含$tmp$的东西提取出来,可以得到:

$y^{tmp}=z(mod$ $q)$

然后就可以继续递归下去处理了

代码


namespace hash{
ll first[1000010],val[1000010],hash[1000010],next[1000010],cnt=0,mod=926081;
void init(){memset(first,0,sizeof(first));cnt=0;}
void insert(ll w,ll pos){
ll p=w%mod,u;
for(u=first[p];u;u=next[u]){
if(hash[u]==w){val[u]=pos;return;}
if(!next[u]) break;
}
if(!next[u]){
cnt++;
if(!first[p]) first[p]=cnt;
else next[u]=cnt;
next[cnt]=0;val[cnt]=pos;hash[cnt]=w;
}
}
ll query(ll w){
ll p=w%mod,u;
for(u=first[p];u;u=next[u]){
if(hash[u]==w) return val[u];
}
return -1;
}
}
ll qpow(ll a,ll b,ll p){
ll re=1;
while(b){
if(b&1) re=re*a%p;
a=a*a%p;b>>=1;
}
return re;
}
ll gcd(ll a,ll b){
if(b==0) return a;
else return gcd(b,a%b);
}
ll bsgs(ll a,ll b,ll p){
if(b==1) return 0;//不要忘了特判
ll i,j,tmp=1,d=1,cnt=0;
hash::init();
while((tmp=gcd(a,p))!=1){
if(b%tmp) return -1;
cnt++;b/=tmp;p/=tmp;d=d*(a/tmp)%p;//注意这个d的写法
if(b==d) return cnt;//记得写这个
}
ll m=ceil(sqrt(double(p))),base=qpow(a,m,p);//注意这两个东西一定要写在这里,不要写在while上面
tmp=b;
for(j=0;j<m;j++){
hash::insert(tmp,j);
tmp=(tmp*a)%p;
}
for(i=m;i<=p+m;i+=m){//这里注意p+m,不然的话可能会有少数情况挂掉
d=(d*base)%p;//同时注意这里的tmp相当于是一开始就是上面的d而不是1,也就是一开始要乘上已经除掉的东西
tmp=hash::query(d);
if(tmp!=-1) return i-tmp+cnt;
}
return -1;
}

二次剩余(2019/4/14更新)

什么是二次剩余

考虑一个模意义下的方程:$x^2$ $mod$ $p=n$,其中$n\in [1,p-1]$,不考虑$n=0$时显然有解的情况

若这个方程的未知数$x$有在$[0,p-1]$中的整数解,我们称$n$为模$p$意义下的二次剩余,否则称为非二次剩余

判断是否为二次剩余

下文所有等式省略模意义

这里实际上有一个叫勒让德符号的东西,但是我觉得那玩意儿太麻烦了,就不说他的名字了,但是要知道是这个东西

以下方法仅仅对奇质数有效

由费马小定理,我们知道:$n^{p-1}=1$

那么显然$n^{\frac{p-1}{2}}=1$或者$-1$

那么若$x2=n$,对应上面两种情况,我们分别有$x{p-1}=1$或者$-1$

显然这里再根据费马小定理,$x^{p-1}$ 只能是$1$

所以当$n^{\frac{p-1}{2}}=-1$时,$n$是非二次剩余,否则是二次剩余

在有二次剩余的情况下求解$x$

这个......我懒得写证明了,放a_crazy_czy菊苣的链接在这里

省选算法学习-BSGS与exBSGS与二次剩余的更多相关文章

  1. 省选算法学习-数据结构-splay

    于是乎,在丧心病狂的noip2017结束之后,我们很快就要迎来更加丧心病狂的省选了-_-|| 所以从写完上一篇博客开始到现在我一直深陷数据结构和网络流的漩涡不能自拔 今天终于想起来写博客(只是懒吧.. ...

  2. 省选算法学习-插头dp

    插头dp?你说的是这个吗? 好吧显然不是...... 所谓插头dp,实际上是“基于连通性的状态压缩dp”的简称,最先出现在cdq的论文里面 本篇博客致力于通过几道小小的例题(大部分都比较浅显)来介绍一 ...

  3. 省选算法学习-回文自动机 && 回文树

    前置知识 首先你得会manacher,并理解manacher为什么是对的(不用理解为什么它是$O(n)$,这个大概记住就好了,不过理解了更方便做$PAM$的题) 什么是回文自动机? 回文自动机(Pal ...

  4. 省选算法学习-dp优化-四边形不等式

    嗯......四边形不等式的确长得像个四边形[雾] 我们在dp中,经常见到这样一类状态以及转移方程: 设$dp\left[i\right]\left[j\right]$表示闭区间$\left[i,j\ ...

  5. BSGS算法学习笔记

    从这里开始 离散对数和BSGS算法 扩展BSGS算法 离散对数和BSGS算法 设$x$是最小的非负整数使得$a^{x}\equiv b\ \ \ \pmod{m}$,则$x$是$b$以$a$为底的离散 ...

  6. DSP算法学习-过采样技术

    DSP算法学习-过采样技术 彭会锋 2015-04-27 23:23:47 参考论文: 1 http://wr.lib.tsinghua.edu.cn/sites/default/files/1207 ...

  7. 算法学习之C语言基础

    算法学习,先熟悉一下C语言哈!!! #include <conio.h> #include<stdio.h> int main(){ printf(+); getch(); ; ...

  8. Python之路,Day21 - 常用算法学习

    Python之路,Day21 - 常用算法学习   本节内容 算法定义 时间复杂度 空间复杂度 常用算法实例 1.算法定义 算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的 ...

  9. C / C++算法学习笔记(8)-SHELL排序

    原始地址:C / C++算法学习笔记(8)-SHELL排序 基本思想 先取一个小于n的整数d1作为第一个增量(gap),把文件的全部记录分成d1个组.所有距离为dl的倍数的记录放在同一个组中.先在各组 ...

随机推荐

  1. forEach、for...in、for...of

    forEach 数组实例的遍历方法 const arr=['red', 'green', 'blue']; arr.forEach(function(element, index) { console ...

  2. C#后台动态添加Grid表格

    前面页面: <ScrollViewer x:Name=" BorderBrush="#25A0DA" VerticalScrollBarVisibility=&qu ...

  3. 面向对象封装的web服务器

    import socket import re import os import sys # 由于前面太繁琐,可以用类封装一下,也可以分几个模块 class HttpServer(object): d ...

  4. PHP CI框架学习

    CI框架的URL辅助函数使用 URL 辅助函数文件包含一些在处理 URL 中很有用的函数 加载辅助函数 在使用CI框架的使用经常碰到跳转和路径方面的问题,site_url()和base_url()很容 ...

  5. B1016 部分A+B (15分)

    B1016 部分A+B (15分) 输入格式: 输入在一行中依次给出 A.DA.B.DB,中间以空格分隔,其中 \(0<A,B<10^10\). 输出格式: 在一行中输出 PA+PB的值. ...

  6. [Codeforces947D]Riverside Curio(思维)

    Description 题目链接 Solution 设S[i]表示到第i天总共S[i]几个标记, 那么满足S[i]=m[i]+d[i]+1 m[i]表示水位上的标记数,d[i]表示水位下的标记数 那么 ...

  7. 笔记-python-statement-with

    笔记-python-statement-with 1.      with语句 1.1.    基础使用案例 在开发时,经常使用with语句来打开文件: with open(‘a.txt’,’a+’, ...

  8. TP5 中出现 No input file specified

    之前用php5.4 更新至php7之后原tp5项目出现 No input file specified 修改方法: 打开public目录下的.htaccess文件,把:RewriteRule ^(.* ...

  9. Python基础——安装运行

    Python是如何运行的? 像绝大多数编程语言一样,要在计算机上能够运行python程序,至少需要安装一个最小的Python包:一个Python解释器和支持的库. 安装Python 安装包下载:htt ...

  10. iOS远程消息推送原理

    1. 什么是远程消息推送? APNs:Apple Push Notification server 苹果推送通知服务苹果的APNs允许设备和苹果的推送通知服务器保持连接,支持开发者推送消息给用户设备对 ...