前置知识

扩展欧几里得,快速幂

都是很基础的东西

扩展欧几里得

说实话这个东西我学了好几遍都没有懂,最近终于搞明白,可以考场现推了,故放到这里来加深印象

翡蜀定理

方程$ax+by=gcd(a,b)$一定有整数解

证明:

因为$gcd(a,b)=gcd(b,a$ $mod$ $b)$

所以假设我们已经求出来了$bx+(a$ $mod$ $b)y=gcd(b,a$ $mod$ $b)$的一组整数解$(p,q)$

因为$a$ $mod$ $b=a-(\lfloor \frac{a}{b} \rfloor \ast b)$

所以$bp+(a-a/b\ast b)q=ax+by$

$b(p-(a/b)q)+aq=ax+by$

所以$x=q,y=(p-(a/b)q)$是一组合法的解

所以我们可以递归$gcd$的过程中倒着算每一层的解

当$b=0$时的解为$x=1,y=0$

BSGS

问题提出

给定$a,b,p$,求最小的$x$,使得$a^x≡b(mod$ $p)$

问题求解

显然这个东西不能直接做

考虑分块的思想

定义$m=sqrt(p)$

设$x=i\ast m - j$

也就是$a^{i\ast m}≡a^j\ast b(mod$ $p)$

那么我们首先把$j=0...m-1$时的$a^j\ast b$插入一个哈希表

然后我们枚举$i$,在哈希表里面查询$a^{i\ast m}$有没有出现过,如果出现过,它最大的$j$是多少

然后就可以在$O(sqrt(p))$的时间内解决这个问题了

放个板子


namespace hash{
ll first[1000010],next[1000010],val[1000010],hash[1000010],mod=926081,cnt=0;
void init(){memset(first,0,sizeof(first));cnt=0;}
void insert(ll w,ll pos){
ll p=w%mod,u;
for(u=first[p];u;u=next[u]){
if(hash[u]==w){val[u]=pos;return;}
if(!next[u]) break;
}
if(!next[u]){
cnt++;
if(!first[p]) first[p]=cnt;
else next[u]=cnt;
val[cnt]=pos;hash[cnt]=w;next[cnt]=0;
}
}
ll find(ll w){
ll p=w%mod,u;
for(u=first[p];u;u=next[u]){
if(hash[u]==w) return val[u];
}
return -1;
}
}
ll qpow(ll a,ll b,ll p){
ll re=1;
while(b){
if(b&1) re=re*a%p;
a=a*a%p;b>>=1;
}
return re;
}
ll gcd(ll a,ll b){
if(b==0) return a;
return gcd(b,a%b);
}
ll bsgs(ll a,ll b,ll p){
if(b==1) return 0;
ll i,j,m=ceil(sqrt((double)p)),tmp=b,cur,base=qpow(a,m,p);
hash::init();
for(j=0;j<m;j++){
hash::insert(tmp,j);
tmp=tmp*a%p;
}
tmp=1;
for(i=m;i<=p;i+=m){
tmp=tmp*base%p;
cur=hash::find(tmp);
if(~cur) return i-cur;
}
return -1;
}

exBSGS

使用BSGS的时候要求$gcd(a,p)=1$,扩展版的exBSGS则不需要

具体操作是这样的:

除掉公约数

假设$tmp=gcd(a,p)$

那么$(y\ast tmp)^x=z\ast tmp(mod$ $q\ast tmp)$

其中$y,z,q$是新设出来的量,$y\ast tmp=a$,$z\ast tmp=b$,$q\ast tmp=p$

这一步可以看出,如果$b$不能整除$gcd(a,p)$,那么一定无解

转化

把等式两边的含$tmp$的东西提取出来,可以得到:

$y^{tmp}=z(mod$ $q)$

然后就可以继续递归下去处理了

代码


namespace hash{
ll first[1000010],val[1000010],hash[1000010],next[1000010],cnt=0,mod=926081;
void init(){memset(first,0,sizeof(first));cnt=0;}
void insert(ll w,ll pos){
ll p=w%mod,u;
for(u=first[p];u;u=next[u]){
if(hash[u]==w){val[u]=pos;return;}
if(!next[u]) break;
}
if(!next[u]){
cnt++;
if(!first[p]) first[p]=cnt;
else next[u]=cnt;
next[cnt]=0;val[cnt]=pos;hash[cnt]=w;
}
}
ll query(ll w){
ll p=w%mod,u;
for(u=first[p];u;u=next[u]){
if(hash[u]==w) return val[u];
}
return -1;
}
}
ll qpow(ll a,ll b,ll p){
ll re=1;
while(b){
if(b&1) re=re*a%p;
a=a*a%p;b>>=1;
}
return re;
}
ll gcd(ll a,ll b){
if(b==0) return a;
else return gcd(b,a%b);
}
ll bsgs(ll a,ll b,ll p){
if(b==1) return 0;//不要忘了特判
ll i,j,tmp=1,d=1,cnt=0;
hash::init();
while((tmp=gcd(a,p))!=1){
if(b%tmp) return -1;
cnt++;b/=tmp;p/=tmp;d=d*(a/tmp)%p;//注意这个d的写法
if(b==d) return cnt;//记得写这个
}
ll m=ceil(sqrt(double(p))),base=qpow(a,m,p);//注意这两个东西一定要写在这里,不要写在while上面
tmp=b;
for(j=0;j<m;j++){
hash::insert(tmp,j);
tmp=(tmp*a)%p;
}
for(i=m;i<=p+m;i+=m){//这里注意p+m,不然的话可能会有少数情况挂掉
d=(d*base)%p;//同时注意这里的tmp相当于是一开始就是上面的d而不是1,也就是一开始要乘上已经除掉的东西
tmp=hash::query(d);
if(tmp!=-1) return i-tmp+cnt;
}
return -1;
}

二次剩余(2019/4/14更新)

什么是二次剩余

考虑一个模意义下的方程:$x^2$ $mod$ $p=n$,其中$n\in [1,p-1]$,不考虑$n=0$时显然有解的情况

若这个方程的未知数$x$有在$[0,p-1]$中的整数解,我们称$n$为模$p$意义下的二次剩余,否则称为非二次剩余

判断是否为二次剩余

下文所有等式省略模意义

这里实际上有一个叫勒让德符号的东西,但是我觉得那玩意儿太麻烦了,就不说他的名字了,但是要知道是这个东西

以下方法仅仅对奇质数有效

由费马小定理,我们知道:$n^{p-1}=1$

那么显然$n^{\frac{p-1}{2}}=1$或者$-1$

那么若$x2=n$,对应上面两种情况,我们分别有$x{p-1}=1$或者$-1$

显然这里再根据费马小定理,$x^{p-1}$ 只能是$1$

所以当$n^{\frac{p-1}{2}}=-1$时,$n$是非二次剩余,否则是二次剩余

在有二次剩余的情况下求解$x$

这个......我懒得写证明了,放a_crazy_czy菊苣的链接在这里

省选算法学习-BSGS与exBSGS与二次剩余的更多相关文章

  1. 省选算法学习-数据结构-splay

    于是乎,在丧心病狂的noip2017结束之后,我们很快就要迎来更加丧心病狂的省选了-_-|| 所以从写完上一篇博客开始到现在我一直深陷数据结构和网络流的漩涡不能自拔 今天终于想起来写博客(只是懒吧.. ...

  2. 省选算法学习-插头dp

    插头dp?你说的是这个吗? 好吧显然不是...... 所谓插头dp,实际上是“基于连通性的状态压缩dp”的简称,最先出现在cdq的论文里面 本篇博客致力于通过几道小小的例题(大部分都比较浅显)来介绍一 ...

  3. 省选算法学习-回文自动机 && 回文树

    前置知识 首先你得会manacher,并理解manacher为什么是对的(不用理解为什么它是$O(n)$,这个大概记住就好了,不过理解了更方便做$PAM$的题) 什么是回文自动机? 回文自动机(Pal ...

  4. 省选算法学习-dp优化-四边形不等式

    嗯......四边形不等式的确长得像个四边形[雾] 我们在dp中,经常见到这样一类状态以及转移方程: 设$dp\left[i\right]\left[j\right]$表示闭区间$\left[i,j\ ...

  5. BSGS算法学习笔记

    从这里开始 离散对数和BSGS算法 扩展BSGS算法 离散对数和BSGS算法 设$x$是最小的非负整数使得$a^{x}\equiv b\ \ \ \pmod{m}$,则$x$是$b$以$a$为底的离散 ...

  6. DSP算法学习-过采样技术

    DSP算法学习-过采样技术 彭会锋 2015-04-27 23:23:47 参考论文: 1 http://wr.lib.tsinghua.edu.cn/sites/default/files/1207 ...

  7. 算法学习之C语言基础

    算法学习,先熟悉一下C语言哈!!! #include <conio.h> #include<stdio.h> int main(){ printf(+); getch(); ; ...

  8. Python之路,Day21 - 常用算法学习

    Python之路,Day21 - 常用算法学习   本节内容 算法定义 时间复杂度 空间复杂度 常用算法实例 1.算法定义 算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的 ...

  9. C / C++算法学习笔记(8)-SHELL排序

    原始地址:C / C++算法学习笔记(8)-SHELL排序 基本思想 先取一个小于n的整数d1作为第一个增量(gap),把文件的全部记录分成d1个组.所有距离为dl的倍数的记录放在同一个组中.先在各组 ...

随机推荐

  1. C#+Winform开发窗体程序

    学习笔记 第一章:winform基础 一.概述 1.Windows Form(简称WinForm) 是微软.NET平台下用于开发"图形界面"应用程序的组件. 2.C/S架构 客户机 ...

  2. chorme浏览器不支持audio/video中的autoplay属性的解决方法

    在chrome 浏览器中输入:chrome://flags 再搜索audio,找到Autoplay policy 再在右侧的选项中设置为 no user gesture is required 即可

  3. html ajax请求 php 下拉 加载更多数据 (也可点击按钮加载更多)

    <input type="hidden" class="total_num" id="total" value="{$tot ...

  4. CF961E Tufurama 树状数组

    E. Tufurama One day Polycarp decided to rewatch his absolute favourite episode of well-known TV seri ...

  5. Android 意图通用类 IntentUrl

    1.整体分析 1.1.源代码如下,可以直接Copy. public class IntentUtil { /** * 打开链接 * 根据设置判断是用那种方式打开 * * @param context ...

  6. 课后题2.87&2.86

    课后题2.86&2.87 单纯就是想加点分第十章的题目都被做过了就做下第二章的,正好复习一下前面学的知识,第二章给我剩下的题目也不多了,我就挑了这个题目. 2.86 考虑一个基于IEEE浮点格 ...

  7. PHP.30-TP框架商城应用实例-后台6-商品会员价格删除-外键,级联操作

    商品会员价格删除 需求:当删除一件商品时,这件商品对应的会员价格也应该从会员价格表{price,level_id,goods_id}中删除掉. 有两种删除方法 1.在钩子函数_before_delet ...

  8. laravel5.5门面

    Facades为应用程序的 服务容器 中可用的类提供了一个 静态接口 . 最直观的好处 就是需记住必须手动注入或配置的长长的类名.因此有人也理解Facades就是一个"快捷别名" ...

  9. Linux 批量删除文件后缀

    例子: [zengs@gene CASP9]$ lscasp9.ids T0526 T0538 T0550 T0562 T0574 T0586 T0598 T0610 T0622 T0634T0515 ...

  10. copyEvens

    public int[] copyEvens(int[] nums, int count) { int newIndex=0; int i=0; int newArray[] = new int[co ...