转载:http://blog.csdn.net/bone_ace/article/details/53107018

前言

  “去重”是日常工作中会经常用到的一项技能,在爬虫领域更是常用,并且规模一般都比较大。去重需要考虑两个点:去重的数据量、去重速度。为了保持较快的去重速度,一般选择在内存中进行去重。

  1、数据量不大时,可以直接放在内存里面进行去重,例如python可以使用set()进行去重。

  2、当去重数据需要持久化时可以使用redis的set数据结构。

  3、当数据量再大一点时,可以用不同的加密算法先将长字符串压缩成 16/32/40 个字符,再使用上面两种方法去重;

  4、当数据量达到亿(甚至十亿、百亿)数量级时,内存有限,必须用“位”来去重,才能够满足需求。Bloomfilter就是将去重对象映射到几个内存“位”,通过几个位的 0/1值来判断一个对象是否已经存在。

  5、然而Bloomfilter运行在一台机器的内存上,不方便持久化(机器down掉就什么都没啦),也不方便分布式爬虫的统一去重。如果可以在Redis上申请内存进行Bloomfilter,以上两个问题就都能解决了。

代码

# coding=utf-8
import redis
from hashlib import md5 class SimpleHash(object):
def __init__(self, cap, seed):
self.cap = cap
self.seed = seed def hash(self, value):
ret = 0
for i in range(len(value)):
ret += self.seed * ret + ord(value[i])
return (self.cap - 1) & ret class BloomFilter(object):
def __init__(self, host='localhost', port=6379, db=0, blockNum=1, key='bloomfilter'):
"""
:param host: the host of Redis
:param port: the port of Redis
:param db: witch db in Redis
:param blockNum: one blockNum for about 90,000,000; if you have more strings for filtering, increase it.
:param key: the key's name in Redis
"""
self.server = redis.Redis(host=host, port=port, db=db)
self.bit_size = 1 << 31 # Redis的String类型最大容量为512M,现使用256M
self.seeds = [5, 7, 11, 13, 31, 37, 61]
self.key = key
self.blockNum = blockNum
self.hashfunc = []
for seed in self.seeds:
self.hashfunc.append(SimpleHash(self.bit_size, seed)) def isContains(self, str_input):
if not str_input:
return False
m5 = md5()
m5.update(str_input)
str_input = m5.hexdigest()
ret = True
name = self.key + str(int(str_input[0:2], 16) % self.blockNum)
for f in self.hashfunc:
loc = f.hash(str_input)
ret = ret & self.server.getbit(name, loc)
return ret def insert(self, str_input):
m5 = md5()
m5.update(str_input)
str_input = m5.hexdigest()
name = self.key + str(int(str_input[0:2], 16) % self.blockNum)
for f in self.hashfunc:
loc = f.hash(str_input)
self.server.setbit(name, loc, 1) if __name__ == '__main__': bf = BloomFilter()
if bf.isContains('http://www.baidu.com'): # 判断字符串是否存在
print 'exists!'
else:
print 'not exists!'
bf.insert('http://www.baidu.com')

说明

  1、Bloomfilter算法如何使用位去重,这个百度上有很多解释。简单点说就是有几个seeds,现在申请一段内存空间,一个seed可以和字符串哈希映射到这段内存上的一个位,几个位都为1即表示该字符串已经存在。

    插入的时候也是,将映射出的几个位都置为1。

  2、需要提醒一下的是Bloomfilter算法会有漏失概率,即不存在的字符串有一定概率被误判为已经存在。这个概率的大小与seeds的数量、申请的内存大小、去重对象的数量有关。下面有一张表,m表示内存大小(多少个位),

   n表示去重对象的数量,k表示seed的个数。例如我代码中申请了256M,即1<<31(m=2^31,约21.5亿),seed设置了7个。看k=7那一列,当漏失率为8.56e-05时,m/n值为23。所以n = 21.5/23 = 0.93(亿),

   表示漏失概率为8.56e-05时,256M内存可满足0.93亿条字符串的去重。同理当漏失率为0.000112时,256M内存可满足0.98亿条字符串的去重。

  

  3、基于Redis的Bloomfilter去重,其实就是利用了Redis的String数据结构,但Redis一个String最大只能512M,所以如果去重的数据量大,需要申请多个去重块(代码中blockNum即表示去重块的数量)。

  4、代码中使用了MD5加密压缩,将字符串压缩到了32个字符(也可用hashlib.sha1()压缩成40个字符)。它有两个作用,一是Bloomfilter对一个很长的字符串哈希映射的时候会出错,经常误判为已存在,

    压缩后就不再有这个问题;二是压缩后的字符为 0~f 共16中可能,我截取了前两个字符,再根据blockNum将字符串指定到不同的去重块进行去重。

总结

    基于redis的Bloomfilter去重,既用上了Bloomfilter的海量去重能力,又用上了Redis的可持久化能力,基于Redis也方便分布式机器的去重。在使用的过程中,要预算好待去重的数据量,则根据上面的表,

  适当地调整seed的数量和blockNum数量(seed越少肯定去重速度越快,但漏失率越大)。

    另外针对基于Scrapy+Redis框架的爬虫,我使用Bloomfilter作了一些优化,只需替换scrapy_redis模块即可使用Bloomfilter去重,并且去重队列和种子队列可以拆分到不同的机器上,

  详情见:《scrapy_redis去重优化(已有7亿条数据),附Demo福利》,代码见:Scrapy_Redis_Bloomfilter

基于Redis的Bloomfilter去重(转载)的更多相关文章

  1. [转载]基于Redis的Bloomfilter去重(附Python代码)

    前言: “去重”是日常工作中会经常用到的一项技能,在爬虫领域更是常用,并且规模一般都比较大.去重需要考虑两个点:去重的数据量.去重速度.为了保持较快的去重速度,一般选择在内存中进行去重. 数据量不大时 ...

  2. 基于Redis的BloomFilter算法去重

    BloomFilter算法及其适用场景 BloomFilter是利用类似位图或者位集合数据结构来存储数据,利用位数组来简洁的表示一个集合,并且能够快速的判断一个元素是不是已经存在于这个集合.因为基于H ...

  3. [转载] 基于Redis实现分布式消息队列

    转载自http://www.linuxidc.com/Linux/2015-05/117661.htm 1.为什么需要消息队列?当系统中出现“生产“和“消费“的速度或稳定性等因素不一致的时候,就需要消 ...

  4. 转载:基于Redis实现分布式锁

    转载:基于Redis实现分布式锁  ,出处: http://blog.csdn.net/ugg/article/details/41894947 背景在很多互联网产品应用中,有些场景需要加锁处理,比如 ...

  5. 在阿里云Centos7.6上面部署基于Redis的分布式爬虫Scrapy-Redis

    原文转载自「刘悦的技术博客」https://v3u.cn/a_id_83 Scrapy是一个比较好用的Python爬虫框架,你只需要编写几个组件就可以实现网页数据的爬取.但是当我们要爬取的页面非常多的 ...

  6. 物联网应用中实时定位与轨迹回放的解决方案 – Redis的典型运用(转载)

    物联网应用中实时定位与轨迹回放的解决方案 – Redis的典型运用(转载)   2015年11月14日|    by: nbboy|    Category: 系统设计, 缓存设计, 高性能系统 摘要 ...

  7. 基于redis排行榜的实战总结

    前言: 之前写过排行榜的设计和实现, 不同需求其背后的架构和设计模型也不一样. 平台差异, 有的立足于游戏平台, 为多个应用提供服务, 有的仅限于单个游戏.排名范围差异, 有的面向全局排名, 有的只做 ...

  8. 基于redis分布式缓存实现

    Redis的复制功能是完全建立在之前我们讨论过的基 于内存快照的持久化策略基础上的,也就是说无论你的持久化策略选择的是什么,只要用到了Redis的复制功能,就一定会有内存快照发生,那么首先要注意你 的 ...

  9. 记一次企业级爬虫系统升级改造(六):基于Redis实现免费的IP代理池

    前言: 首先表示抱歉,春节后一直较忙,未及时更新该系列文章. 近期,由于监控的站源越来越多,就偶有站源做了反爬机制,造成我们的SupportYun系统小爬虫服务时常被封IP,不能进行数据采集. 这时候 ...

随机推荐

  1. Asymptotic I Catalan Number

    卡特兰数出现在许多计数问题中. 常见的例子有:$n$ 个节点的有序二叉树,$2n$ 个括号构成的合法括号序列. 在上面所举的两个例子中,很容易看出卡特兰数满足递推: $$ C_{n+1} = \sum ...

  2. 省选算法学习-回文自动机 && 回文树

    前置知识 首先你得会manacher,并理解manacher为什么是对的(不用理解为什么它是$O(n)$,这个大概记住就好了,不过理解了更方便做$PAM$的题) 什么是回文自动机? 回文自动机(Pal ...

  3. 利用MapReduce计算平均数

    利用mapreduce求出股票价格的开盘和收盘平均数 下图为采集到的股票信息,共计1416支股票的信息 因为在linux系统下默认采用utf-8的编码格式,而在win下txt默认采用ANSI编码格式. ...

  4. CS Academy Distinct Neighbours(经典dp)

    CS Academy Distinct Neighbours(经典dp) 题意: 求相邻无相同数字的合法的排列数 题解: 题解 先将相同的数字分为一类,假设共有n组 定义\(dp[i][j]\)表示前 ...

  5. webpack watch模式产生*.hot-update.json文件

    webpack --watch会产生*.hot-update.json文件,解决方法如下: output: { path: path.join(root, "dist"), fil ...

  6. bzoj2178:圆的面积并

    题意:http://www.lydsy.com/JudgeOnline/problem.php?id=2178 sol  :是谁.......是谁往题里下毒...... 辛普森积分,每次判断左边+右边 ...

  7. Codeforces Round #359 (Div. 2) B

    B. Little Robber Girl's Zoo time limit per test 2 seconds memory limit per test 256 megabytes input ...

  8. Windows2008下RDP采用私有CA服务器证书搭建文档

    在中小型公司建立企业根证书颁发机构 (CA) http://www.microsoft.com/china/smb/issues/sgc/articles/build_ent_root_ca.mspx ...

  9. keystone总结

    1. Keystone(OpenStack Identity Service)是OpenStack框架中,负责身份验证.服务规则和服务令牌的功能, 它实现了OpenStack的Identity API ...

  10. [ CodeVS冲杯之路 ] P1576

    不充钱,你怎么AC? 题目:http://codevs.cn/problem/1576/ 这和上一道题十分的类似,所以直接秒杀 ( 上一题:http://www.cnblogs.com/hadilo/ ...