背包,子集和以及 (max, +) 卷积在特殊情形下的求法

子集和 1:总重量不太大

有 \(n\) 个物品,每个物品重量为 \(w_i\),且 \(\sum\limits_{i} w_i=C\)。你需要对于 \(k\in [1,C]\) 均求出是否存在子集和 \(=k\)。

时间复杂度 \(\mathcal O(\frac{C\sqrt{C}}{\omega})\),空间复杂度 \(\mathcal O(n+\frac{C}{\omega})\)。

我们对于相同重量的物品二进制分组,然后暴力 01 背包,用 bitset 加速即可。

时间复杂度证明:

不妨设重量为 \(w\) 的物品有 \(a\) 个,则 \(\sum\limits_{i=1}^{m} w_ia_i=C\)。二进制拆分后的物品数为 \(\sum\limits_{k=0}\sum\limits_{i=1}^{m} [a_i\ge 2^k]\)。

对于固定的 \(k\),满足 \([a_i\ge 2^k]\) 的 \(i\) 有 \(\sqrt{\frac{C}{2^k}}\) 个,因此物品数 \(\sum\limits_{k}\sqrt{\frac{C}{2^k}}=\sqrt{C}\sum\limits_{k}2^{-k/2}\le \frac{\sqrt{2}}{\sqrt{2}-1}\sqrt{C}\)。


子集和 2:单个重量不太大

有 \(n\) 个物品,每个物品重量为 \(w_i\),满足 \(w_i\le D\)。问是否存在子集和 \(=C\)。

时间复杂度 \(\mathcal O(nD)\),空间复杂度 \(\mathcal O(n+D)\)时间复杂度 \(\mathcal O(\frac{n\sqrt{n}D}{\omega})\),空间复杂度 \(\mathcal O(n+\frac{\sqrt{n}D}{\omega})\)

法一:

先找到最大的 \(k\) 满足 \(\sum\limits_{i=1}^{k} w_i\le C\),问题转化为能否从 \(\{-w_1,\cdots,-w_k,w_{k+1},\cdots,w_n\}\) 选出子集和 \(C-\sum\limits_{i=1}^{k}w_i\)。该做法的核心思想是:如果当前子集和 \(>C\),那么从 \(w_1\sim w_k\) 中选一些数减到 \(\le C\),否则从 \(w_{k+1}\sim w_n\) 中选一些数加到 \(>C\)。

我们定义 \(\text{can}(tot,l,r)\) 表示是否存在 \(\lambda_{l},\lambda_{l+1},\cdots,\lambda_{r}=\{0,1\}\) 满足 \(\sum\limits_{i=1}^{l-1}w_i+\sum\limits_{i=l}^{r} \lambda_iw_i=tot\)。

性质 1:固定 \(tot,r\),则 \(\text{can}(tot,l,r)=1\) 的 \(l\) 为一段前缀。

我们定义 \(dp_{tot,r}\) 表示最大的 \(l\) 满足 \(\text{can}(tot,l,r)=1\)(如不存在,\(dp=-1\))。考虑转移。

性质 2:固定 \(tot,l\),则 \(\text{can}(tot,l,r)=1\) 的 \(r\) 为一段后缀。

据此有 \(dp_{tot,r}\le dp_{tot,r+1}\),于是有三类转移:

  • \(dp_{tot+w_{r+1},r+1}\leftarrow dp_{tot,r}\)
  • \(dp_{tot,r+1}\leftarrow dp_{tot,r}\)
  • \(dp_{tot-w_{l'},r}\leftarrow l'\ (l'\in [1,dp_{tot,r}))\)

我们发现第三类转移有 \(\mathcal O(n)\) 条,但是对于固定的 \(tot\),我们在 \(dp_{tot,r}\) 时有意义的转移只有 \(l'\in [dp_{tot,r-1},dp_{tot,r})\),否则可以在 \(dp_{tot,r-1}\) 的时候就转移掉。

因此,对于固定的 \(tot\),第三类转移总共有 \(\mathcal O(n)\) 条,因此时间复杂度是均摊 \(\mathcal O(nD)\) 的。

法二:

考虑随机打乱这个集合,则过程中期望达到的最值为 \(\mathcal O(\sqrt{n}D)\),用 bitset 加速即可。


(max, +) 卷积

给定两个长为 \(n\) 的序列 \(A,B\),求它们的 \((max,+)\) 卷积 \(C\)。保证 \(B\) 是凸函数。

时间复杂度 \(\mathcal O(n\log n)\) 或 \(\mathcal O(n)\),空间复杂度 \(\mathcal O(n)\)。

法一:

我们记 \(C_i\) 的决策位置(即 \(B\) 序列位置)为 \(f_i\),容易证明 \(f_{i-1}\le f_i\)。因此直接分治即可。

时间复杂度 \(\mathcal O(n\log n)\),空间复杂度 \(\mathcal O(n)\)。

法二:

考虑构建一个 \((2n-1)\times n\) 的矩阵 \(X\),满足 \(X_{i,j}=A_i+B_{i-j}\)。我们想要的即为 \(X\) 的每行最小值。

由于 \(B\) 是凸的,所以 \(X\) 是完全单调矩阵,用 SMAWK 求解即可。

不过听 Froggy 说 SMAWK 的效率被二分栈 / 分治吊打,所以可能 not practical。

时间复杂度 \(\mathcal O(n)\),空间复杂度 \(\mathcal O(n)\)。


01 背包:单个重量不太大

有 \(n\) 个物品,每个物品重量为 \(w_i\),价值为 \(v_i\),不同的 \(w_i\) 有 \(D\) 个。选出最大的子集 \(S\) 满足重量和不超过 \(C\),且总价值最大。

时间复杂度 \(\mathcal O(n\log n+DC\log C)\) 或 \(\mathcal O(n\log n+DC)\),空间复杂度 \(\mathcal O(n+C)\)。

对于相同 \(w\) 的物品,我们肯定将 \(v\) 从大到小贪心取,图像为一个凸函数。因此我们将背包在模 \(C\) 意义下分别做 \((max,+)\) 卷积即可。


完全背包:单个重量不太大

有 \(n\) 个物品,每个物品重量为 \(w_i\),价值为 \(v_i\),满足 \(w_i\le D\)。选出最大的可重子集 \(S\) 满足重量和不超过 \(C\),且总价值最大。

时间复杂度 \(\mathcal O(D^2\log C)\),空间复杂度 \(\mathcal O(n+D)\)。

注意到对于 \(i>D\),有 \(dp_i=\max\limits_{j+k=i} (dp_j+dp_k)\),且如果 \(|j-k|>D\),我们始终可以调整得到 \(|j-k|\le D\)。

因此通过 \([dp_{j-\frac{D}{2}},\cdots,dp_{j+\frac{D}{2}}]\) 以及 \([dp_{k-\frac{D}{2}},\cdots,dp_{k+\frac{D}{2}}]\),可以暴力卷积得到 \(dp_{j+k}\) 的值。

现在,假如我们知道了 \([dp_{k-D},\cdots,dp_{k+D}]\),它卷自己可以得到 \([dp_{2k-D},\cdots,dp_{2k+D}]\)。因此采用倍增的形式可以快速计算出 \([dp_{C-D},\cdots,dp_{C}]\),答案即为其中的最大值。

初始化的地方,暴力计算 \([dp_0,\cdots,dp_{2D}]\) 即可。

背包,子集和以及 (max, +) 卷积在特殊情形下的求法的更多相关文章

  1. 直接抱过来dd大牛的《背包九讲》来做笔记

    P01: 01背包问题 题目 有N件物品和一个容量为V的背包.第i件物品的费用是c[i],价值是w[i].求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大. 基本思路 这是最 ...

  2. HDU 3535 AreYouBusy (混合背包)

    题意:给你n组物品和自己有的价值s,每组有l个物品和有一种类型: 0:此组中最少选择一个 1:此组中最多选择一个 2:此组随便选 每种物品有两个值:是需要价值ci,可获得乐趣gi 问在满足条件的情况下 ...

  3. UESTC 424 AreYouBusy --混合背包

    混合三种背包问题. 定义:dp[i][k]表示体积为k的时候,在前i堆里拿到的最大价值. 第一类,至少选一项,dp初值全赋为负无穷,这样才能保证不会出现都不选的情况.dp[i][k] = max(dp ...

  4. Uva 12563,劲歌金曲,01背包

    题目链接:https://uva.onlinejudge.org/external/125/12563.pdf 题意:n首歌,每首歌的长度给出,还剩 t 秒钟,由于KTV不会在一首歌没有唱完的情况下切 ...

  5. HDU 5234 Happy birthday --- 三维01背包

    HDU 5234 题目大意:给定n,m,k,以及n*m(n行m列)个数,k为背包容量,从(1,1)开始只能往下走或往右走,求到达(m,n)时能获得的最大价值 解题思路:dp[i][j][k]表示在位置 ...

  6. 卷积神经网络CNN全面解析

    卷积神经网络(CNN)概述 从多层感知器(MLP)说起 感知器 多层感知器 输入层-隐层 隐层-输出层 Back Propagation 存在的问题 从MLP到CNN CNN的前世今生 CNN的预测过 ...

  7. uva 11825 Hackers' Crackdown (状压dp,子集枚举)

    题目链接:uva 11825 题意: 你是一个黑客,侵入了n台计算机(每台计算机有同样的n种服务),对每台计算机,你能够选择终止一项服务,则他与其相邻的这项服务都终止.你的目标是让很多其它的服务瘫痪( ...

  8. 第十三章——卷积神经网络(CNN)

    卷积神经网络(Convolutional neural networks,CNNs)来源于对大脑视觉皮层的研究,并于1980s开始应用于图像识别.现如今CNN已经在复杂的视觉任务中取得了巨大成功,比如 ...

  9. HDU 2602 Bone Collector 骨头收集者【01背包】

    题目链接:https://vjudge.net/contest/103424#problem/A 题目大意: 第一行输入几组数据,第二行第一个数字代表物体个数,第二个数代表总体积.需要注意的是,第三排 ...

随机推荐

  1. 微信小程序登录鉴权流程图

  2. hibernate数据源

      Hibernate的描述文件可以是一个properties属性文件,也可以是一个xml文件.下面讲一下Hibernate.cfg.xml的配置.配置格式如下:1. 配置数据源 在Hibernate ...

  3. linux磁盘之分区类型id

    我们通过命令来查看一下linux系统定义的分区类型id及其意义(更改磁盘分区类型必须掌握)系统采样: [root@fp-web-130 ~]# cat /etc/redhat-release Cent ...

  4. String类 的基本用法

    1.String 对象的创建 String对象的创建有两种方式. 第1 种方式就是我们最常见的创建字符串的方式: String str1 = "Hello, 慕课网"; 第 2 种 ...

  5. Java进阶 JVM 内存与垃圾回收篇(一)

    JVM 1. 引言 1.1 什么是JVM? 定义 Java Vritual Machine - java 程序的运行环境(Java二进制字节码的运行环境) 好处 一次编译 ,到处运行 自动内存管理,垃 ...

  6. canvasToTempFilePath: fail SecurityError: The operations is insecure

    我这里报这个错是因为canvas用到的图片有跨域问题.解决了跨域就对了. 值得一提的是:我用hbuilderX开发的h5.在内置浏览器调试时一切正常.到了部署上线后才报的这个错.

  7. MySQL8自增主键变化

    MySQL8自增主键变化 醉后不知天在水,满船清梦压星河. 一.简述 MySQL版本从5直接大跃进到8,相信MySQL8一定会有很多令人意想不到的改进,如果不想只会CRUD可以看看. 比如系统表引擎的 ...

  8. Go 语言接口及使用接口实现链表插入

    @ 目录 1. 接口定义 1.1 空接口 1.2 实现单一接口 1.3 接口多方法实现 2. 多态 2.1 为不同数据类型的实体提供统一的接口 2.2 多接口的实现 3. 系统接口调用 4. 接口嵌套 ...

  9. Python小游戏——猜数字

    1 print("--------------我爱鱼-----------") 2 temp = input("不妨猜一下甲鱼现在心里想的是哪个数字:") 3 ...

  10. 【阿里巴巴Java开发手册1.7.0(嵩山版)】编程规约&MySQL 数据库规约

    阿里巴巴Java开发手册1.7.0(嵩山版) 一.编程规约 (一)命名风格 所有命名不得以下划线和$开始和结束. 所有命名不得以拼音或拼音英文混合. 类名使用UpperCamelCase风格. 方法名 ...