基于python的数学建模---差分方程
一、递推关系——酵母菌生长模型
代码:
import matplotlib.pyplot as plt
time = [i for i in range(0,19)]
number = [9.6,18.3,29,47.2,71.1,119.1,174.6,257.3,
350.7,441.0,513.3,559.7,594.8,629.4,640.8,
651.1,655.9,659.6,661.8]#19个数据 与i相对应
plt.title('Relationship between time and number')#创建标题
plt.xlabel('time')#X轴标签
plt.ylabel('number')#Y轴标签
plt.plot(time,number)#画图
plt.show()#显示
分析:
酵母菌数量增长有一个这样的规律:当某些资源只能支撑某个最大限度的种群 数量,而不能支持种群数量的无限增长,当接近这个最大值时,种群数量的增 长速度就会慢下来。
- 两个观测点的值差△p来表征增长速度
- △p与目前的种群数量有关,数量越大,增长速度越快
- △p还与剩余的未分配的资源量有关,资源越多,增长速度越快
- 然后以极限总群数量与现有种群数量的差值表征剩余资源量
 
认为delta_p为二次函数时
代码:
import numpy as np
import matplotlib.pylab as plt
p_n = [9.6,18.3,29,47.2, 71.1,119.1, 174.6,
257.3, 350.7, 441.0, 513.3, 559.7, 594.8, 629.4,
640.8, 651.1, 655.9, 659.6]
delta_p = [8.7, 10.7,18.2,23.9, 48,55.5,
82.7, 93.4, 90.3, 72.3, 46.4,35.1,
34.6, 11.4, 10.3,4.8,3.7,2.2]
plt.plot(p_n,delta_p) poly = np.polyfit(p_n, delta_p, 2)
z = np.polyval(poly,p_n)
print(poly) plt.plot(p_n, z)
plt.show()
[-8.01975671e-04 5.16054679e-01 6.41123361e+00]
b :把k(665-pn)看成一个整体
代码:
import numpy as np
import matplotlib.pylab as plt
p_n = [9.6,18.3,29,47.2, 71.1,119.1, 174.6,
257.3, 350.7, 441.0, 513.3, 559.7, 594.8, 629.4,
640.8, 651.1, 655.9, 659.6]
delta_p = [8.7, 10.7,18.2,23.9, 48,55.5,
82.7, 93.4, 90.3, 72.3, 46.4,35.1,
34.6, 11.4, 10.3,4.8,3.7,2.2] p_n = np.array(p_n)
x= (665 - p_n) * p_n
plt.plot(x,delta_p) ploy = np.polyfit(x,delta_p,1)
print(ploy)
z = np.polyval(ploy,x) plt.plot(x,z)
plt.show()
[ 0.00081448 -0.30791574]
模型 :
为什么没有后面的b? 一开始酵母菌需要有一定的数量
预测曲线:
import matplotlib.pyplot as plt
p0 = 9.6
p_list = []
for i in range(20):
p_list.append(p0)
p0 = 0.00081448*(665-p0)*p0+p0
plt.plot(p_list)
plt.show()
预测与实际曲线
import matplotlib.pyplot as plt
number = [9.6,18.3,29,47.2,71.1,119.1,174.6,257.3,
350.7,441.0,513.3,559.7,594.8,629.4,640.8,
651.1,655.9,659.6,661.8]
time = [i for i in range(0,19)]
p0 = 9.6
p_list = []
for i in range(20):
p_list.append(p0)
p0 = 0.00081448*(665-p0)*p0+p0
plt.plot(p_list)
plt.scatter(time,number,s=100,alpha=1.0,marker='o')
plt.show()
二、显式差分——热传导方程
其中,k为热传导系数,第2式是方程的初值条件,第3、4式是边值条件,热传导方程如下:
绘制初值条件函数图像(第二个式子)
from matplotlib import pylab
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl mpl.rcParams['font.sans-serif'] = ['Microsoft YaHei'] # 指定默认字体
mpl.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题 def initialCondition(x):
return 4.0 * (1.0 - x) * x xArray = np.linspace(0, 1.0, 50)
yArray = np.array(list(map(initialCondition, xArray)))
pylab.figure(figsize=(12, 6))
pylab.xlabel('$x$', fontsize=15)
pylab.ylabel('$f(x)$', fontsize=15)
pylab.title(u'一维热传导方程初值条件')
pylab.plot(xArray, yArray)
plt.show()
三、马尔科夫链
构建差分方程组
代码:
import matplotlib.pyplot as plt
RLIST = [0.33333]
DLIST = [0.33333]
ILIST = [0.33333]
for i in range(40):
R = RLIST[i]*0.75+DLIST[i]*0.20+ILIST[i]*0.40
RLIST.append(R)
D = RLIST[i]*0.05+DLIST[i]*0.60+ILIST[i]*0.20
DLIST.append(D)
I = RLIST[i]*0.20+DLIST[i]*0.20+ILIST[i]*0.40
ILIST.append(I)
plt.plot(RLIST)
plt.plot(DLIST)
plt.plot(ILIST)
plt.xlabel('Time')
plt.ylabel('Voting percent')
plt.annotate('DemocraticParty',xy = (5,0.2))
plt.annotate('RepublicanParty',xy = (5,0.5))
plt.annotate('IndependentCandidate',xy = (5,0.25))
plt.show()
print(RLIST,DLIST,ILIST)
基于python的数学建模---差分方程的更多相关文章
- 使用Python scipy linprog 线性规划求最大值或最小值(使用Python学习数学建模笔记)
函数格式 scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, method='simp ...
- Python数学建模-01.新手必读
Python 完全可以满足数学建模的需要. Python 是数学建模的最佳选择之一,而且在其它工作中也无所不能. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数学 ...
- Python数学建模-02.数据导入
数据导入是所有数模编程的第一步,比你想象的更重要. 先要学会一种未必最佳,但是通用.安全.简单.好学的方法. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数据导入 ...
- Python小白的数学建模课-A1.国赛赛题类型分析
分析赛题类型,才能有的放矢. 评论区留下邮箱地址,送你国奖论文分析 『Python小白的数学建模课 @ Youcans』 带你从数模小白成为国赛达人. 1. 数模竞赛国赛 A题类型分析 年份 题目 要 ...
- Python小白的数学建模课-A3.12 个新冠疫情数模竞赛赛题与点评
新冠疫情深刻和全面地影响着社会和生活,已经成为数学建模竞赛的背景帝. 本文收集了与新冠疫情相关的的数学建模竞赛赛题,供大家参考,欢迎收藏关注. 『Python小白的数学建模课 @ Youcans』带你 ...
- Python小白的数学建模课-07 选址问题
选址问题是要选择设施位置使目标达到最优,是数模竞赛中的常见题型. 小白不一定要掌握所有的选址问题,但要能判断是哪一类问题,用哪个模型. 进一步学习 PuLP工具包中处理复杂问题的字典格式快捷建模方法. ...
- Python小白的数学建模课-09 微分方程模型
小白往往听到微分方程就觉得害怕,其实数学建模中的微分方程模型不仅没那么复杂,而且很容易写出高水平的数模论文. 本文介绍微分方程模型的建模与求解,通过常微分方程.常微分方程组.高阶常微分方程 3个案例手 ...
- Python小白的数学建模课-B5. 新冠疫情 SEIR模型
传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. 考虑存在易感者.暴露者.患病者和康复者四类人群,适用于具有潜伏期.治愈后获得终身免疫的传染病. 本 ...
- Python小白的数学建模课-B6. 新冠疫情 SEIR 改进模型
传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. SEIR 模型考虑存在易感者.暴露者.患病者和康复者四类人群,适用于具有潜伏期.治愈后获得终身免疫 ...
- Python小白的数学建模课-B4. 新冠疫情 SIR模型
Python小白的数学建模课-B4. 新冠疫情 SIR模型 传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. SIR 模型将人群分为易感者(S类). ...
随机推荐
- JavaWeb核心篇(3)——JSP,MVC,三层架构
JavaWeb核心篇(3)--JSP,MVC,三层架构 在本篇文章中我们会学习到JSP,MVC,三层架构 虽然JSP已经快被时代所淘汰,但是在一些老旧的工作场所还是有在使用,所以了解一下也不为过 至于 ...
- RabbitMQ之消息模式简单易懂,超详细分享~~~
前言 上一篇对RabbitMQ的流程和相关的理论进行初步的概述,如果小伙伴之前对消息队列不是很了解,那么在看理论时会有些困惑,这里以消息模式为切入点,结合理论细节和代码实践的方式一起来学习. 正文 常 ...
- 《Java基础——break与continue用法详解》
Java基础--break与continue用法详解 1. break语句: 规则: 1. 仅用于循环语句和switch语句当中,用于跳出循环. 2. 当只有一层循环时,则直接跳出循环,不 ...
- 当 EDA 遇到 Serverless,亚马逊云科技出招了
近二三十年来,软件开发领域毫无疑问是发展最为迅速的行业之一. 在上个世纪九十年代,世界上市值最高的公司大多是资源类或者重工业类的公司,例如埃克森美孚或者通用汽车,而现在市值最高的公司中,纯粹的软件公司 ...
- kubeadm init 命令执行流程
- 使用filebeat过滤掉部分字段
host,agent,ecs三个字段也是不让drop的 processors: - drop_fields: fields: ["log","input",&q ...
- git commit、git push、git pull、 git fetch、git merge 的含义与区别
git commit:是将本地修改过的文件提交到本地库中: git push:是将本地库中的最新信息发送给远程库: git pull:是从远程获取最新版本到本地,并自动merge: git fetch ...
- SQL通用语法和SQL分类
SQL通用语法 1.SQL 语句可以单行或多行书写,以分号结尾 2.可使用空格和缩进来增强语句的可读性 3.MySQL 数据库的SQL语句不区分大小写,关键字建议使用大写 4.3种注释 单行注释: - ...
- Node.js(六)MongoDB
student.js var express = require('express'); var router = express.Router(); const _=require("lo ...
- 使用python制作动图
利用python制作gif图 引言 当写文章时候,多张图片会影响排版,可以考虑制作gif图 准备 pip install imageio 代码 # This is a sample Python sc ...