Hadoop的第一个产品是HDFS,可以说分布式文件存储是分布式计算的基础,也可见分布式文件存储的重要性。如果我们将大数据计算比作烹饪,那么数据就是食材,而Hadoop分布式文件系统HDFS就是烧菜的那口大锅。这些年来,各种计算框架、各种算法、各种应用场景不断推陈出新,让人眼花缭乱,但是大数据存储的王者依然是HDFS。

为什么HDFS的地位如此稳固呢?在整个大数据体系里面,最宝贵、最难以代替的资产就是数据,大数据所有的一切都要围绕数据展开。HDFS作为最早的大数据存储系统,存储着宝贵的数据资产,各种新的算法、框架要想得到人们的广泛使用,必须支持HDFS才能获取已经存储在里面的数据。所以大数据技术越发展,新技术越多,HDFS得到的支持越多,我们越离不开HDFS。HDFS也许不是最好的大数据存储技术,但依然最重要的大数据存储技术

那我们就从HDFS的原理说起,今天我们来聊聊HDFS是如何实现大数据高速、可靠的存储和访问的。

Hadoop分布式文件系统HDFS的设计目标是管理数以千计的服务器、数以万计的磁盘,将这么大规模的服务器计算资源当作一个单一的存储系统进行管理,对应用程序提供数以PB计的存储容量,让应用程序像使用普通文件系统一样存储大规模的文件数据。

如何设计这样一个分布式文件系统?其实思路很简单。

我们想想RAID磁盘阵列存储,RAID将数据分片后在多块磁盘上并发进行读写访问,从而提高了存储容量、加快了访问速度,并通过数据的冗余校验提高了数据的可靠性,即使某块磁盘损坏也不会丢失数据。将RAID的设计理念扩大到整个分布式服务器集群,就产生了分布式文件系统,Hadoop分布式文件系统的核心原理就是如此。

和RAID在多个磁盘上进行文件存储及并行读写的思路一样,HDFS是在一个大规模分布式服务器集群上,对数据分片后进行并行读写及冗余存储。因为HDFS可以部署在一个比较大的服务器集群上,集群中所有服务器的磁盘都可供HDFS使用,所以整个HDFS的存储空间可以达到PB级容量。

上图是HDFS的架构图,从图中你可以看到HDFS的关键组件有两个,一个是DataNode,一个是NameNode。

DataNode负责文件数据的存储和读写操作,HDFS将文件数据分割成若干数据块(Block),每个DataNode存储一部分数据块,这样文件就分布存储在整个HDFS服务器集群中。应用程序客户端(Client)可以并行对这些数据块进行访问,从而使得HDFS可以在服务器集群规模上实现数据并行访问,极大地提高了访问速度。

在实践中,HDFS集群的DataNode服务器会有很多台,一般在几百台到几千台这样的规模,每台服务器配有数块磁盘,整个集群的存储容量大概在几PB到数百PB。

NameNode负责整个分布式文件系统的元数据(MetaData)管理,也就是文件路径名、数据块的ID以及存储位置等信息。HDFS为了保证数据的高可用,会将一个数据块复制为多份(缺省情况为3份),并将多份相同的数据块存储在不同的服务器上,甚至不同的机架上。这样当有磁盘损坏,或者某个DataNode服务器宕机,甚至某个交换机宕机,导致其存储的数据块不能访问的时候,客户端会查找其备份的数据块进行访问。

下面这张图是数据块多份复制存储的示意,图中对于文件/users/sameerp/data/part-0,其复制备份数设置为2,存储的BlockID分别为1、3。Block1的两个备份存储在DataNode0和DataNode2两个服务器上,Block3的两个备份存储DataNode4和DataNode6两个服务器上,上述任何一台服务器宕机后,每个数据块都至少还有一个备份存在,不会影响对文件/users/sameerp/data/part-0的访问。

和RAID一样,数据分成若干数据块后存储到不同服务器上,可以实现数据大容量存储,并且不同分片的数据可以并行进行读/写操作,进而实现数据的高速访问。你可以看到,HDFS的大容量存储和高速访问相对比较容易实现,但是HDFS是如何保证存储的高可用性呢?

我们尝试从不同层面来讨论一下HDFS的高可用设计。

1.数据存储故障容错

磁盘介质在存储过程中受环境或者老化影响,其存储的数据可能会出现错乱。HDFS的应对措施是,对于存储在DataNode上的数据块,计算并存储校验和(CheckSum)。在读取数据的时候,重新计算读取出来的数据的校验和,如果校验不正确就抛出异常,应用程序捕获异常后就到其他DataNode上读取备份数据。

2.磁盘故障容错

如果DataNode监测到本机的某块磁盘损坏,就将该块磁盘上存储的所有BlockID报告给NameNode,NameNode检查这些数据块还在哪些DataNode上有备份,通知相应的DataNode服务器将对应的数据块复制到其他服务器上,以保证数据块的备份数满足要求。

3.DataNode故障容错

DataNode会通过心跳和NameNode保持通信,如果DataNode超时未发送心跳,NameNode就会认为这个DataNode已经宕机失效,立即查找这个DataNode上存储的数据块有哪些,以及这些数据块还存储在哪些服务器上,随后通知这些服务器再复制一份数据块到其他服务器上,保证HDFS存储的数据块备份数符合用户设置的数目,即使再出现服务器宕机,也不会丢失数据。

4.NameNode故障容错

NameNode是整个HDFS的核心,记录着HDFS文件分配表信息,所有的文件路径和数据块存储信息都保存在NameNode,如果NameNode故障,整个HDFS系统集群都无法使用;如果NameNode上记录的数据丢失,整个集群所有DataNode存储的数据也就没用了。

所以,NameNode高可用容错能力非常重要。NameNode采用主从热备的方式提供高可用服务,请看下图。

集群部署两台NameNode服务器,一台作为主服务器提供服务,一台作为从服务器进行热备,两台服务器通过ZooKeeper选举,主要是通过争夺znode锁资源,决定谁是主服务器。而DataNode则会向两个NameNode同时发送心跳数据,但是只有主NameNode才能向DataNode返回控制信息。

正常运行期间,主从NameNode之间通过一个共享存储系统shared edits来同步文件系统的元数据信息。当主NameNode服务器宕机,从NameNode会通过ZooKeeper升级成为主服务器,并保证HDFS集群的元数据信息,也就是文件分配表信息完整一致。

对于一个软件系统而言,性能差一点,用户也许可以接受;使用体验差,也许也能忍受。但是如果可用性差,经常出故障导致不可用,那就比较麻烦了;如果出现重要数据丢失,那开发工程师绝对是摊上大事了。

而分布式系统可能出故障地方又非常多,内存、CPU、主板、磁盘会损坏,服务器会宕机,网络会中断,机房会停电,所有这些都可能会引起软件系统的不可用,甚至数据永久丢失。

所以在设计分布式系统的时候,软件工程师一定要绷紧可用性这根弦,思考在各种可能的故障情况下,如何保证整个软件系统依然是可用的。

根据我的经验,一般说来,常用的保证系统可用性的策略有冗余备份、失效转移和降级限流。虽然这3种策略你可能早已耳熟能详,但还是有一些容易被忽略的地方。

比如冗余备份,任何程序、任何数据,都至少要有一个备份,也就是说程序至少要部署到两台服务器,数据至少要备份到另一台服务器上。此外,稍有规模的互联网企业都会建设多个数据中心,数据中心之间互相进行备份,用户请求可能会被分发到任何一个数据中心,即所谓的异地多活,在遭遇地域性的重大故障和自然灾害的时候,依然保证应用的高可用。

当要访问的程序或者数据无法访问时,需要将访问请求转移到备份的程序或者数据所在的服务器上,这也就是失效转移。失效转移你应该注意的是失效的鉴定,像NameNode这样主从服务器管理同一份数据的场景,如果从服务器错误地以为主服务器宕机而接管集群管理,会出现主从服务器一起对DataNode发送指令,进而导致集群混乱,也就是所谓的“脑裂”。这也是这类场景选举主服务器时,引入ZooKeeper的原因。ZooKeeper的工作原理,我将会在后面专门分析。

当大量的用户请求或者数据处理请求到达的时候,由于计算资源有限,可能无法处理如此大量的请求,进而导致资源耗尽,系统崩溃。这种情况下,可以拒绝部分请求,即进行限流;也可以关闭部分功能,降低资源消耗,即进行降级。限流是互联网应用的常备功能,因为超出负载能力的访问流量在何时会突然到来,你根本无法预料,所以必须提前做好准备,当遇到突发高峰流量时,就可以立即启动限流。而降级通常是为可预知的场景准备的,比如电商的“双十一”促销,为了保障促销活动期间应用的核心功能能够正常运行,比如下单功能,可以对系统进行降级处理,关闭部分非重要功能,比如商品评价功能。

我们小结一下,看看HDFS是如何通过大规模分布式服务器集群实现数据的大容量、高速、可靠存储、访问的。

1.文件数据以数据块的方式进行切分,数据块可以存储在集群任意DataNode服务器上,所以HDFS存储的文件可以非常大,一个文件理论上可以占据整个HDFS服务器集群上的所有磁盘,实现了大容量存储。

2.HDFS一般的访问模式是通过MapReduce程序在计算时读取,MapReduce对输入数据进行分片读取,通常一个分片就是一个数据块,每个数据块分配一个计算进程,这样就可以同时启动很多进程对一个HDFS文件的多个数据块进行并发访问,从而实现数据的高速访问。关于MapReduce的具体处理过程,我们会在专栏后面详细讨论。

3.DataNode存储的数据块会进行复制,使每个数据块在集群里有多个备份,保证了数据的可靠性,并通过一系列的故障容错手段实现HDFS系统中主要组件的高可用,进而保证数据和整个系统的高可用。

我眼中的大数据(二)——HDFS的更多相关文章

  1. 大数据(1)---大数据及HDFS简述

    一.大数据简述 在互联技术飞速发展过程中,越来越多的人融入互联网.也就意味着各个平台的用户所产生的数据也越来越多,可以说是爆炸式的增长,以前传统的数据处理的技术已经无法胜任了.比如淘宝,每天的活跃用户 ...

  2. FusionInsight大数据开发---HDFS应用开发

    HDFS应用开发 HDFS(Dadoop Distributed File System) HDFS概述 高容错性 高吞吐量 大文件存储 HDFS架构包含三部分 Name Node DataNode ...

  3. 我要进大厂之大数据Hadoop HDFS知识点(2)

    01 我们一起学大数据 老刘继续分享出Hadoop中的HDFS模块的一些高级知识点,也算是对今天复习的HDFS内容进行一次总结,希望能够给想学大数据的同学一点帮助,也希望能够得到大佬们的批评和指点! ...

  4. 老李分享:大数据测试之HDFS文件系统

    poptest是国内唯一一家培养测试开发工程师的培训机构,以学员能胜任自动化测试,性能测试,测试工具开发等工作为目标.如果对课程感兴趣,请大家咨询qq:908821478,咨询电话010-845052 ...

  5. 我要进大厂之大数据Hadoop HDFS知识点(1)

    01 我们一起学大数据 老刘今天开始了大数据Hadoop知识点的复习,Hadoop包含三个模块,这次先分享出Hadoop中的HDFS模块的基础知识点,也算是对今天复习的内容进行一次总结,希望能够给想学 ...

  6. 我眼中的大数据(三)——MapReduce

    ​ 这次来聊聊Hadoop中使用广泛的分布式计算方案--MapReduce.MapReduce是一种编程模型,还是一个分布式计算框架. MapReduce作为一种编程模型功能强大,使用简单.运算内容不 ...

  7. Java+大数据开发——HDFS详解

    1. HDFS 介绍  • 什么是HDFS 首先,它是一个文件系统,用于存储文件,通过统一的命名空间--目录树来定位文件. 其次,它是分布式的,由很多服务器联合起来实现其功能,集群中的服务器有各自的角 ...

  8. 大数据 - hadoop - HDFS+Zookeeper实现高可用

    高可用(Hign Availability,HA) 一.概念 作用:用于解决负载均衡和故障转移(Failover)问题. 问题描述:一个NameNode挂掉,如何启动另一个NameNode.怎样让两个 ...

  9. 大数据(5) - HDFS中的常用API操作

    一.安装java 二.IntelliJ IDEA(2018)安装和破解与初期配置 参考链接 1.进入官网下载IntelliJ IDEA https://www.jetbrains.com/idea/d ...

随机推荐

  1. C++ 练气期之指针所指何处

    1. 指针 指针是一种C++数据类型,用来描述内存地址. 什么是内存地址? 内存中的每一个存储单元格都有自己的地址,地址是使用二进制进行编码.地址从形态上看是一个整型数据类型.但是,它的数据含义并不表 ...

  2. List集合_介绍&常用方法和ArrayList集合

    List集合 我们掌握了Collection接口的使用后,再来看看Collection接口中的子类,他们都具备那些特性呢? 接下来,我们一起学习Collection中的常用几个子类(java.util ...

  3. HelloWord程序代码的编写和HelloWord程序的编译运行

    1.新建文件夹,存放代码 2.新建一个Java文件 文件后缀名.java(Hello.java) 3.编写代码public class Hello{public static void main(St ...

  4. 网络通讯之Socket-Tcp(二)

    网络通讯之Socket-Tcp  分成2部分讲解: 网络通讯之Socket-Tcp(一): 1.如何理解Socket 2.Socket通信重要函数 3.Socket Tcp 调用的基本流程图 4.简单 ...

  5. Spring 核心概念

    Spring 核心概念 引言 本文主要介绍 Spring 源码中使用到的一些核心类 1. BeanDefinition BeanDefinition表示Bean定义,BeanDefinition 中存 ...

  6. 软件测试—Day2

    day2 Q:面试过程中,性能测试你测试什么?关注的点是什么? A:程序的响应时间,系统的吞吐量,以及并发用户数,和tps,qps,以及DB的IOPS,和服务器的系统资源(CPU和内存).通过一定的工 ...

  7. ShardingSphere数据库读写分离

    码农在囧途 最近这段时间来经历了太多东西,无论是个人的压力还是个人和团队失误所带来的损失,都太多,被骂了很多,也被检讨,甚至一些不方便说的东西都经历了,不过还好,一切都得到了解决,无论好坏,这对于个人 ...

  8. qbxt五一数学Day3

    目录 1. 组合数取模 1. \(n,m\le 200\),\(p\) 任意 2. \(n,m\le 10^6\),\(p\ge 10^9\) 素数 3. \(n,m\le 10^6\),\(p\le ...

  9. 求教:Knife4jAggregationDesktop访问报错HTTP ERROR 404

    (1)Windows Server 2019下面,java版本:c:\Users\WinUser01\.jdks\corretto-1.8.0_292\bin\java.exe(2)Knife4jAg ...

  10. 企业运维实践-Nginx使用geoip2模块并利用MaxMind的GeoIP2数据库实现处理不同国家或城市的访问最佳实践指南

    关注「WeiyiGeek」公众号 设为「特别关注」每天带你玩转网络安全运维.应用开发.物联网IOT学习! 希望各位看友[关注.点赞.评论.收藏.投币],助力每一个梦想. 本章目录 目录 0x00 前言 ...