\(\text{Solution}\)

当 \(m=2\) 时,\(ans=2n\sum a_{i,j}\)

当 \(m=3\) 时

当然先套路地考虑某一行的贡献,记为第 \(x\) 行

则当取 \(max\) 时有 \(a_{x,i}+a_{x,j}>a_{y,i}+a_{y,j},a_{x,i}+a_{x,j}>a_{z,i}+a_{z,j}\)

即 \(a_{x,i}-a_{y,i}>a_{y,j}-a_{x,j},a_{x,i}-a_{z,i}>a_{z,j}-a_{x,j}\)

把第 \(i\) 列看作二元组 \((a_{y,j}-a_{x,j},a_{z,j}-a_{x,j})\),询问则是 \(<(a_{x,i}-a_{y,i},a_{x,i}-a_{z,i})\) 的数量

二位偏序,树状数组即可

当 \(m=4\) 时,可以同 \(m=3\) 那样,三位偏序 \(cdq\) 分治

当然 \(\text{Min-max}\) 容斥更妙,因为

\[\min_{i\in S} x_i = \sum_{T\subseteq S} (-1)^{|T|-1} \max_{i\in T} x_i
\]

\(\max\) 同理

把 \(\min+\max\) 展开,则可以发现 \(2ans=\sum_{T\subseteq S} (-1)^{|T|-1} \max_{i\in T} x_i + \min_{i\in T} x_i\)

于是沿用 \(m=2\) 和 \(m=3\) 的做法即可

注意到这里用了严格大于小于符号,但需要考虑取等,这东西很容易算重

一个笨点的方法就是当不等式相等时,默认 \(x<y\) 的更小,\(x<z\) 的更小,将贡献放到最早的有相等的行

这需要在修改和查询时讨论相等情况

\(\text{Code}\)

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#define RE register
#define IN inline
using namespace std;
typedef long long LL; const int N = 2e5 + 5, len = 4e5 + 7, D = 2e5 + 3;
int m, n, a[5][N];
LL SUM, ans; IN void read(int &x)
{
char ch = getchar(); x = 0; int f = 1;
for(; !isdigit(ch); f = (ch == '-' ? -1 : 1), ch = getchar());
for(; isdigit(ch); x = (x<<3)+(x<<1)+(ch^48), ch = getchar());
x *= f;
} struct node{
int ty, x, y, v;
IN bool operator < (const node &a) const{return x < a.x ? 1 : (x == a.x ? ty < a.ty : 0);}
}Q[N * 2]; struct BIT{
int c[len + 3];
IN void init(){memset(c, 0, sizeof c);}
IN int lowbit(int x){return x & (-x);}
IN void add(int x){x += D; for(; x <= len; x += lowbit(x)) c[x]++;}
IN int Query(int x){x += D; int s = 0; for(; x; x -= lowbit(x)) s += c[x]; return s;}
}T; IN LL calc(int x, int y, int z)
{
int cnt = 0; LL res = 0;
for(RE int i = 1; i <= n; i++)
Q[++cnt] = node{1, a[y][i] - a[x][i], a[z][i] - a[x][i]},
Q[++cnt] = node{0, a[x][i] - a[y][i], a[x][i] - a[z][i], a[x][i]};
sort(Q + 1, Q + cnt + 1);
for(RE int i = 1, j; i <= cnt; i = j + 1)
{
j = i;
while (j < cnt && Q[j + 1].x == Q[i].x) ++j;
if (x < y) for(RE int k = j; k >= i; k--) if (Q[k].ty) T.add(Q[k].y);
else res += (LL)Q[k].v * T.Query(Q[k].y - 1 + (x < z));
else for(RE int k = i; k <= j; k++) if (Q[k].ty) T.add(Q[k].y);
else res += (LL)Q[k].v * T.Query(Q[k].y - 1 + (x < z));
}
T.init();
for(RE int i = cnt, j; i; i = j - 1)
{
j = i;
while (j > 1 && Q[j - 1].x == Q[i].x) --j;
if (x < y) for(RE int k = i; k >= j; k--) if (Q[k].ty) T.add(Q[k].y);
else res += (LL)Q[k].v * (T.Query(len - D) - T.Query(Q[k].y - (x < z)));
else for(RE int k = j; k <= i; k++) if (Q[k].ty) T.add(Q[k].y);
else res += (LL)Q[k].v * (T.Query(len - D) - T.Query(Q[k].y - (x < z)));
}
T.init();
return res * 2;
}
IN LL solve3(int i, int j, int k){return calc(i, j, k) + calc(j, i, k) + calc(k, i, j);}
IN LL solve2(int i, int j)
{
LL res = 0;
for(RE int x = 1; x <= n; x++) res += a[i][x] + a[j][x];
return res * n * 2;
} int main()
{
read(m), read(n);
for(RE int i = 0; i < m; i++)
for(RE int j = 1; j <= n; j++) read(a[i][j]), SUM += a[i][j];
if (m == 2) ans = solve2(0, 1);
else if (m == 3) ans = solve3(0, 1, 2);
else{
ans = SUM * n * 4;
for(RE int i = 0; i < 4; i++)
for(RE int j = i + 1; j < 4; j++) ans -= solve2(i, j);
for(RE int i = 0; i < 4; i++)
for(RE int j = i + 1; j < 4; j++)
for(RE int k = j + 1; k < 4; k++) ans += solve3(i, j, k);
ans >>= 1;
}
printf("%lld\n", ans);
}

[NOI Online 2022 提高组] 如何正确地排序的更多相关文章

  1. luogu P6570 [NOI Online #3 提高组]优秀子序列 二进制 dp

    LINK:P6570 [NOI Online #3 提高组]优秀子序列 Online 2的T3 容易很多 不过出于某种原因(时间不太够 浪了 导致我连暴力的正解都没写. 容易想到 f[i][j]表示前 ...

  2. [NOI Online 2021 提高组] 积木小赛

    思路不说了. 想起来自己打比赛的时候,没睡好.随便写了个\(HASH\),模数开小一半分都没有. 然后学了\(SAM\),发现这个判重不就是个水题. \(SAM\)是字串tire的集合体. 随便\(d ...

  3. [NOI Online #2 提高组]涂色游戏 题解

    题目描述 你有 1020 个格子,它们从 0 开始编号,初始时所有格子都还未染色,现在你按如下规则对它们染色: 编号是 p1 倍数的格子(包括 0号格子,下同)染成红色. 编号是 p2 倍数的格子染成 ...

  4. NOI On Line 提高组题解

    (话说其实我想填的是去年CSP的坑...但是貌似有一道题我还不会写咕咕咕... 先写一下这一次的题解吧. T1:序列.题意省略. 两种操作.这种题要先分析部分分 给出了全部都是2操作的子任务. 发现A ...

  5. NOI Online #2 提高组 游戏

    没用二项式反演的菜比. 题目链接 Solution 非平局代表的树上祖先关系是比较好统计,(可以在处理一个点时,考虑用他去匹配他的子树中的东西)而平局的关系比较难统计.我们不妨求出至少 \(k\) 个 ...

  6. NOI Online #2 提高组 游记

    没 NOI Online 1 挂的惨就来写游记吧,不知道为啥 NOI Online 1 民间数据测得 60 分的 T1 最后爆零了... 昏昏沉沉的醒来,吃了早饭,等到 \(8:30\) 进入比赛网页 ...

  7. NOI Online #3 提高组 T1水壶 题解

    题目描述 有 n 个容量无穷大的水壶,它们从 1∼n 编号,初始时 i 号水壶中装有 Ai 单位的水. 你可以进行不超过 k 次操作,每次操作需要选择一个满足 1≤x≤n−1 的编号 x,然后把 x ...

  8. NOI Online #3 提高组 游记

    考的好就来写游记吧 2020.5.24 星期日 上一天晚上为了班里事物做 PPT 肝到 11:30,这比赛就打打玩玩.第二天醒来有点昏昏沉沉的感觉. 打开题面,一看 T1,好像是个性质极其简单的前缀和 ...

  9. [NOI Online #3 提高组] 魔法值

    现在只会\(O(qn^3log)\)的\(40pts\)做法,鸽了. 反正就是预处理之后,去掉一个\(n\). 我预处理了,没去\(n\),hhhh,成功减少了一半的常数.

  10. 洛谷 P6570 - [NOI Online #3 提高组] 优秀子序列(集合幂级数+多项式)

    洛谷题面传送门 首先 \(3^n\) 的做法就不多说了,相信对于会状压 dp+会枚举子集的同学来说不算困难(暴论),因此这篇博客将着重讲解 \(2^nn^2\) 的做法. 首先如果我们把每个 \(a_ ...

随机推荐

  1. C# DataTable 虚拟Sql临时表,可以做一些处理

    /// <summary> /// 获取临时表-和数据库表一样的的表结构的才可以 /// </summary> /// <param name="SourceT ...

  2. 基于.NetCore开发博客项目 StarBlog - (20) 图片显示优化

    前言 我的服务器带宽比较高,博客部署在上面访问的时候几乎没感觉有加载延迟,就没做图片这块的优化,不过最近有小伙伴说博客的图片加载比较慢,那就来把图片优化完善一下吧~ 目前有两个地方需要完善 图片瀑布流 ...

  3. 学习ASP.NET Core Blazor编程系列十四——修改

    学习ASP.NET Core Blazor编程系列一--综述 学习ASP.NET Core Blazor编程系列二--第一个Blazor应用程序(上) 学习ASP.NET Core Blazor编程系 ...

  4. 轻松玩转sed

    sed处理文本方法 1.文本或管道输入 2.读入一行到模式控件 3.sed命令处理 4.输出到屏幕 所以 sed是一个流处理编辑器 sed一次处理一行内容 sed不改变文件内容(可以通过重定向改变文件 ...

  5. Vue2基本组件间通信

    Vue2组件通信的基础方式 自己的理解:组件化通信,无非就是数据你传我,我传你,两个组件的相互交流,方法很多,下方有图示(此篇建议小白阅读,大神的话也不会看,哈哈哈哈!仅供参考,有不同的意见可以一起交 ...

  6. sql注入的一丢丢

  7. 【Shell案例】【tail/head/sed、echo $res ·· cat和管道】2、打印文件的最后5行

    描述经常查看日志的时候,会从文件的末尾往前查看,于是请你写一个 bash脚本以输出一个文本文件 nowcoder.txt中的最后5行示例:假设 nowcoder.txt 内容如下: #include& ...

  8. 多进程TCP服务端并发- 进程join方法 - IPC机制

    目录 同步与异步 阻塞与非阻塞 综合使用 创建进程的多种方式 进程间数据隔离 进程join方法 IPC机制 生产者消费者模型 进程对象的多种方法 僵尸进程与孤儿进程 守护进程 多线程实现TCP服务端并 ...

  9. 图解B树及C#实现(1)

    目录 前言 索引原理 局部性(Locality) 数据的局部性 内存存储和磁盘存储 磁盘存储适合的索引结构 B树简介 定义 B树中数据的有序性 用C#定义数据结构 插入数据的过程 分裂:新节点诞生的唯 ...

  10. Django框架三板斧本质-jsonResponse对象-form表单上传文件request对象方法-FBV与CBV区别

    目录 一:视图层 2.三板斧(HttpResponse对象) 4.HttpResponse() 5.render() 6.redirect() 7.也可以是一个完整的URL 二:三板斧本质 1.Dja ...