Primitive Primes - 题解【数学】
题面
It is Professor R's last class of his teaching career. Every time Professor R taught a class, he gave a special problem for the students to solve. You being his favourite student, put your heart into solving it one last time.
You are given two polynomials f(x)=a0+a1x+⋯+an−1xn−1 and g(x)=b0+b1x+⋯+bm−1xm−1, with positive integral coefficients. It is guaranteed that the cumulative GCD of the coefficients is equal to 11 for both the given polynomials. In other words, gcd(a0,a1,…,an−1)=gcd(b0,b1,…,bm−1)=1. Let h(x)=f(x)⋅g(x). Suppose that h(x)=c0+c1x+⋯+cn+m−2xn+m−2.
You are also given a prime number pp. Professor R challenges you to find any tt such that ctct isn't divisible by pp. He guarantees you that under these conditions such tt always exists. If there are several such tt, output any of them.
As the input is quite large, please use fast input reading methods.
Input
The first line of the input contains three integers, nn, mm and pp (1≤n,m≤1e6,2≤p≤1e9), — nn and mm are the number of terms in f(x)f(x) and g(x)g(x) respectively (one more than the degrees of the respective polynomials) and pp is the given prime number.
It is guaranteed that p is prime.
The second line contains nn integers a0,a1,…,an−1 (1≤ai≤1e9) — ai is the coefficient of xi in f(x).
The third line contains mm integers b0,b1,…,bm−1 (1≤bi≤1e9) — bi is the coefficient of xi in g(x).
Output
Print a single integer t (0≤t≤n+m−2) — the appropriate power of x in h(x) whose coefficient isn't divisible by the given prime p. If there are multiple powers of x that satisfy the condition, print any.
Examples
Input3 2 2
1 1 2
2 1
Output1
Input2 2 999999937
2 1
3 1
Output2
大意
给出两个非负整系数多项式f(x),g(x)和一个质数p,求一个数t,使得对于两个多项式的乘积h(x)=f(x)g(x),其次数为t的项不能被p整除。如果有多种结果,输出任意一个。
题解
这是我ACM校队预备役选拔赛第二场的一道题,在赛场上我没想出来……后来知道解法之后,我不由得赞叹:还是我的技术力太低了吗……不过我在第三场选拔赛的时候成功入选预备役,被我丢弃多时的博客再次被我捡了回来【滑稽】。
回想多项式乘法,我们假设f(x)的i次项系数为ai,g(x)的j次项系数为bj,h(x)的k次项系数为ck,则有ck=a0bk+a1b(k-1)+a2b(k-2)+...+akb0。我们从低位往高位考虑,因为题目保证给出的数p一定是个质数,所以如果ai无法被p整除,bj无法被p整除,那么aibj也一定无法被p整除。所以,我们把两个多项式的系数都对p取模,从低位往高位扫,扫到两个多项式内第一个模p不为0的数,假设是ai,bj。那么,含有项aibj的系数就一定无法被p整除。哪一个系数含有aibj呢?自然是c(i+j)了。下面上赛后补题的AC代码:
#include
#define rep(i,a,b) for(register int i=a;i<=b;++i)
#define rrep(i,a,b) for(register int i=a;i>=b;--i)
#define grp int T;scanf("%d",&T);rep(C,1,T)
#define grpc int T;cin>>T;rep(C,1,T)
#define etr putchar('\n')
#define in1(a) scanf("%d",&a)
#define in2(a,b) scanf("%d %d",&a,&b)
#define in3(a,b,c) scanf("%d %d %d",&a,&b,&c)
#define elif else if
#define mem(arr,val) memset(arr,val,sizeof(arr))
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
int n, m, p;
int a[1000010], b[1000010];
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cin >> n >> m >> p;
rep(i, 0, n - 1) {
cin >> a[i];
a[i] %= p;
}
rep(i, 0, m - 1) {
cin >> b[i];
b[i] %= p;
}
int f1, f2;
for (f1 = 0; f1 < n; ++f1) {
if (a[f1] != 0) break;
}
for (f2 = 0; f2 < m; ++f2) {
if (b[f2] != 0) break;
}
cout << f1 + f2 << endl;
return 0;
}
/**
* ┏┓ ┏┓+ +
* ┏┛┻━━━┛┻┓ + +
* ┃ ┃
* ┃ ━ ┃ ++ + + +
* ████━████+
* ◥██◤ ◥██◤ +
* ┃ ┻ ┃
* ┃ ┃ + +
* ┗━┓ ┏━┛
* ┃ ┃ + + + +
* ┃ ┃ + + + + + +
* ┃ ┗━━━┓
* ┃ ┣┓
* ┃ ┏┛
* ┗┓┓┏━┳┓┏┛ + + + +
* ┃┫┫ ┃┫┫
* ┗┻┛ ┗┻┛+ + + +
*/
Primitive Primes - 题解【数学】的更多相关文章
- CF1316C Primitive Primes
CF1316C [Primitive Primes] 给出两个多项式\(a_0+a_1x+a_2x^2+\dots +a_{n-1}x^{n-1}\)和\(b_0+b_1x+b_2x^2+ \dots ...
- CodeCraft-20 (Div. 2) C. Primitive Primes (数学)
题意:给你两个一元多项式\(f(x)\)和\(g(x)\),保证它们每一项的系数互质,让\(f(x)\)和\(g(x)\)相乘得到\(h(x)\),问\(h(x)\)是否有某一项系数不被\(p\)整除 ...
- S - Primitive Primes CodeForces - 1316C 数学
数学题 在f(x)和g(x)的系数里找到第一个不是p的倍数的数,然后相加就是答案 为什么? 设x1为f(x)中第一个不是p的倍数的系数,x2为g(x)...... x1+x2前的系数为(a[x1+x2 ...
- Codeforce-CodeCraft-20 (Div. 2)-C. Primitive Primes(本原多项式+数学推导)
It is Professor R's last class of his teaching career. Every time Professor R taught a class, he gav ...
- [题解]数学期望_luogu_P1850_换教室
数学期望dp,题面第一次见很吓人,然而从CCF语翻译成人话就简单多了, 开始一般会想到用 f [ i ] [ j ]表示前 i 个课程申请 j 次的期望,然而其实会发现转移的时候还和上一次的情况有关( ...
- POJ1284:Primitive Roots——题解
http://poj.org/problem?id=1284 给一个奇质数p,求p的原根数量. 有一个结论:当正整数n存在原根时,其一共有phi(phi(n))个不同余的原根. 所以答案为phi(p- ...
- HDU 5984 题解 数学推导 期望
Let’s talking about something of eating a pocky. Here is a Decorer Pocky, with colorful decorative s ...
- # CodeCraft-20 (Div. 2)
CodeCraft-20 (Div. 2) A. Grade Allocation 思路 : 无脑水题 代码 #include<iostream> #include<algorith ...
- 【uoj#21】[UR #1]缩进优化 数学
题目描述 给出 $n$ 个数 ,求 $\text{Min}_{x=1}^{\infty}\sum\limits_{i=1}^n(\lfloor\frac {a_i}x\rfloor+a_i\ \tex ...
随机推荐
- Git 工作流简介
1.概述 工作流有各式各样的用法,但也正因此使得在实际工作中如何上手使用增加了难度.这篇指南通过总览公司团队中最常用的几种 Git 工作流让大家可以上手使用. 在阅读的过程中请记住,本文中的几种工作流 ...
- vivo 商品中台的可视化微前端实践
一.背景 在电商领域内,商品是一个重要组成部分,与其对应的商品管理系统,则负责商品的新建.编辑.复制等功能.随着商品管理系统的成熟稳定和业务上的扩展需求,催化出了商品中台的诞生.它可以将现有商品功能最 ...
- JDBC中的Statement 和PreparedStatement的区别?
PreparedStatement是预编译的SQL语句,效率高于Statement. PreparedStatement支持操作符,相对于Statement更加灵活. PreparedStatemen ...
- org.apache.kafka.common.errors.SerializationException: Error deserializing... Caused by: org.apache.kafka.common.errors.SerializationException: Size of data received by IntegerDeserializer is not 4
原因,最近开发的kafka消息接收,突然报如下错: org.apache.kafka.common.errors.SerializationException: Error deserializing ...
- 什么是 Spring 的依赖注入?
依赖注入,是 IOC 的一个方面,是个通常的概念,它有多种解释.这概念是说你 不用创建对象,而只需要描述它如何被创建.你不在代码里直接组装你的组件和 服务,但是要在配置文件里描述哪些组件需要哪些服务, ...
- 如果我不输入<!DOCTYPE HTML>,HTML 5能工作吗?
No,浏览器将无法识别HTML文件,并且HTML 5标签将无法正常工作.
- 学习Cobbler(一)
一. http://cobbler.github.io/ Cobbler is a Linux installation server that allows for rapid setup of n ...
- linux文本编辑器vim详解
vim 1.打开文件 vim [option] - file... 打开文件 +# 打开文件后,让光标处于第#行的行首 +/字符串 打开文件后,光标处于第一个被匹配到字符串的行首 -b file 二进 ...
- C++ | 虚函数初探
虚函数 虚函数 是在基类中使用关键字 virtual 声明的函数.在派生类中重新定义基类中定义的虚函数时,会告诉编译器不要静态链接到该函数. 我们想要的是在程序中任意点可以根据所调用的对象类型来选择调 ...
- 基于HTML5的网络拓扑图(1)
什么是网络拓扑 网络拓扑,指构成网络的成员间特定的排列方式.分为物理的,即真实的.或者逻辑的,即虚拟的两种.如果两个网络的连接结构相同,我们就説它们的网络拓扑相同,尽管它们各自内部的物理接线.节点间距 ...