超强视频超分AI算法,从此只看高清视频
最近发现一个特别强的视频超分算法————BasicVSR,在真实世界数据集中,实现了前所未有的视觉重建效果,最近它还拿下了超分比赛NTIRE 2021三冠一亚的优异成绩,登上了CVPR 2022。
视频超分,假设低分辨率视频是从高分辨率的视频经过一系列的退化操作而得到,超分算法就是将该退化操作进行求逆,从而可以将低分辨率视频恢复成高分辨率视频。


对算法细节感兴趣的同学可以先研究一下论文『Investigating Tradeoffs in Real-World Video Super-Resolution』

我试玩了一下,感觉效果还是蛮不错的,下面就分享一下BasicVSR在ubuntu下的安装极简教程。
实不相瞒,macOS和ubuntu下我都安装成功了,Windows没有成功(老报错),感兴趣且运气爆表的同学可以再试试。
安装
1 创建环境
conda create -n realbasic python=3.8
2 安装pytorch
https://pytorch.org/get-started/locally/

具体版本需根据自己的电脑配置,如有GPU,需与注意自己的cuda版本,可以使用nvidia-smi查看。
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.1 -c pytorch
3 安装mim 和 mmcv-full
MMCV 是一个面向计算机视觉的基础库,它支持了很多开源项目。建议安装完整版:mmcv-full ,包含所有的特性以及丰富的开箱即用的 CUDA 算子。

但是直接pip安装需注意cuda和torch版本,容易安装失败。建议使用MIM安装,它会自动检查 CUDA 和 PyTorch 环境并尽量帮我们安装和环境匹配的预编译版本的 MMCV-full,从而省去编译的耗时。
pip install openmim
mim install mmcv-full
4 安装MMEditing
MMEditing 是基于 PyTorch 的图像&视频编辑开源工具箱, 提供修复/抠图/超分辨率/生成等任务最先进的算法。用pip我试了也失败了几次,最后只能本地安装:
git clone https://github.com/open-mmlab/mmediting.git
cd mmediting
pip install -r requirements.txt
# 如报错,忽略即可,继续执行下指令
pip install -v -e .
使用
1 克隆项目
https://github.com/ckkelvinchan/RealBasicVSR
2 下载预训练模型
下载地址:

在RealBasicVSR项目下新建checkpoints文件夹

3 运行
将需要转换的视频放到data目录下,运行即可
python inference_realbasicvsr.py configs/realbasicvsr_x4.py checkpoints/RealBasicVSR_x4.pth data/demo_001.mp4 results/demo_001.mp4 --fps=12.5
4 结果
运行比较耗时,需耐心等待,如果你有钞能力,当我没说。

超强视频超分AI算法,从此只看高清视频的更多相关文章
- 媒体应用视频超分AI神器!360P视频一键转换HD
作为多媒体应用的开发者,你是否想为媒体播放器快速开发创新AI功能?例如: 在播放低画质视频过程中对其进行逐帧超分 让满屏飘飞的弹幕自动绕过画面的主体人物 HMS Core 6.0.0开放的多媒体管线服 ...
- 超强、超详细Redis数据库入门教程
这篇文章主要介绍了超强.超详细Redis入门教程,本文详细介绍了Redis数据库各个方面的知识,需要的朋友可以参考下 [本教程目录] 1.redis是什么2.redis的作者何许人也3.谁在使用red ...
- 超强、超详细Redis数据库入门教程(转载)
这篇文章主要介绍了超强.超详细Redis入门教程,本文详细介绍了Redis数据库各个方面的知识,需要的朋友可以参考下 [本教程目录] 1.redis是什么 2.redis的作者何许人也 3.谁在使 ...
- 聊聊找AI算法岗工作
https://blog.csdn.net/weixin_42137700/article/details/81628028 首先,本文不是为了增加大家的焦虑感,而是站在一名学生的角度聊聊找AI算法岗 ...
- 超强、超详细Redis入门教程【转】
这篇文章主要介绍了超强.超详细Redis入门教程,本文详细介绍了Redis数据库各个方面的知识,需要的朋友可以参考下 [本教程目录] 1.redis是什么2.redis的作者何许人也3.谁在使用red ...
- AI佳作解读系列(二)——目标检测AI算法集杂谈:R-CNN,faster R-CNN,yolo,SSD,yoloV2,yoloV3
1 引言 深度学习目前已经应用到了各个领域,应用场景大体分为三类:物体识别,目标检测,自然语言处理.本文着重与分析目标检测领域的深度学习方法,对其中的经典模型框架进行深入分析. 目标检测可以理解为是物 ...
- 【中国象棋人机对战】引入了AI算法,学习低代码和高代码如何混编并互相调用
以低代码和高代码(原生JS代码)混编的方式引入了AI算法,学习如何使用表达式调用原生代码的.整个过程在众触低代码应用平台进行,适合高阶学员. AI智能级别演示 AI算法分三个等级,体现出来的智能水平不 ...
- 视频结构化 AI 推理流程
「视频结构化」是一种 AI 落地的工程化实现,目的是把 AI 模型推理流程能够一般化.它输入视频,输出结构化数据,将结果给到业务系统去形成某些行业的解决方案. 换个角度,如果你想用摄像头来实现某些智能 ...
- 浅析初等贪吃蛇AI算法
作为小学期程序设计训练大作业的一部分,也是自己之前思考过的一个问题,终于利用小学期完成了贪吃蛇AI的一次尝试,下作一总结. 背景介绍: 首先,我针对贪吃蛇AI这一关键词在百度和google上尽心了检索 ...
随机推荐
- Java与网页JSP文件编码的小总结
感谢大佬: https://www.cnblogs.com/yangguoe/p/8467672.html(编码发展史) https://blog.csdn.net/seabiscuityj/arti ...
- 关于SVN常用命令之export
SVN官方命令参考地址:http://www.subversion.org.cn/svnbook/nightly/svn.ref.html 关于export命令 导出一个干净的不带.svn文件夹的目录 ...
- Volatile关键字和ThreadLocal变量的简单使用
原创:转载需注明原创地址 https://www.cnblogs.com/fanerwei222/p/11812459.html package thread; /** * volatile关键字和T ...
- CABasicAnimation动画
使用CABasicAnimation动画: CALayer *znzLayer; = [[CALayer alloc]init]; //创建不断该表CALayer的transform属性动画 CABa ...
- 何为VRRP
VRRP 1.VRRP概述 2.VRRP结构 3.VRRP双主双备 前言:如何让多个网关能协同工作但又不会互相冲突?这时VRRP就应运而生,它可以实现网关的备份,又能解决多个网关之间互相冲突的问题. ...
- jqGrid 修改单元格值或者替换图片及其他
var rowIds = jQuery("#list1").jqGrid('getDataIDs'); for (var k = 0; k < ...
- 警惕!Python 中少为人知的 10 个安全陷阱!
作者:Dennis Brinkrolf 译者:豌豆花下猫@Python猫 原题:10 Unknown Security Pitfalls for Python 英文:https://blog.sona ...
- PHP宝典面试笔试题目
PHP宝典面试笔试题目 来自<PHP程序员面试笔试宝典>,涵盖了近三年了各大型企业常考的PHP面试题,针对面试题提取出来各种面试知识也涵盖在了本书. PHP题目 [真题68] ( ) ...
- Solution -「51nod 1584」加权约数和
\(\mathcal{Description}\) Link. 令 \(\sigma(n)\) 为 \(n\) 的约数之和.求: \[\sum_{i=1}^n\sum_{j=1}^n\max\ ...
- 关于mybatis,需要掌握的基础
目录 ❀ 总结 mybatis,需要掌握的基础如下: 1.了解ORM 思想.ORM思想的作用.映射配置的两种方式 2.MyBatis开发流程(基本使用) 3.日志框架 4.了解mybatis生命周期并 ...