【学习笔记】动态树 Link-Cut Tree
- 闲话
LCT 优秀博客:
- \(\color{black}{\textsf{F}}\color{red}{\textsf{lashHu}}\) 大佬的 cnblogs:https://www.cnblogs.com/flashhu/p/8324551.html
- 动态树 Link-Cut Tree
- 前置知识
- 「必学」Splay。
- 「重要」树链剖分 / 重链剖分(虽然并不需要用到,但是了解重链剖分的思想还是有用的)。
- 「必学」实链剖分。
实链剖分是一种动态的剖分方式。
对于一个点连向它儿子的所有边,我们选择一条边进行剖分。
被选择的边称为实边,其他边为虚边。
实边连接的儿子称为实儿子。
对于一条实边连接成的链,称为实链。
实链剖分的剖分结果是可变的,可以灵活调整。
和重链剖分的区别就是,重链剖分需要找到儿子子树大小最大的一个连重边,而实链剖分不需要。
- 何为 Link-Cut Tree
给定一棵树,有以下操作:
- 修改 \(x\) 的点权。
- 求出 \(x,y\) 的简单路径的点权和。
- 修改 \(x\) 子树每一点的点权。
- 求出 \(x\) 子树的点权和。
一个很简单的「树链剖分」题目,不是吗?
如果我们增加几个操作呢?
- 断开 \(x \to y\) 这一条边。
- 连上 \(x \to y\) 这一条边。
- 把这棵树改成以 \(x\) 为根。
很显然,因为这棵树要动态删边和加边,且有换根操作,维护静态树的树链剖分就无法处理这类题目了,「动态树 Link-Cut Tree,LCT」应运而生。
具体的,LCT 可以维护以下操作(引自 FlashHu cnblogs):
- 查询、修改链上的信息(最值,总和等)
- 随意指定原树的根(即换根)
- 动态连边、删边
- 合并两棵树、分离一棵树
- 动态维护连通性
- 更多意想不到的操作
因为 LCT 是动态的数据结构,所以线段树等已不适合维护,引入「Splay」这种平衡树来维护之 \(^{\texttt{[1]}}\)。
LCT 实质上维护了一个森林,每棵树 都由若干棵 Splay 维护。有如下性质:
每棵 Splay 都维护一条原树的路径,这条路径满足节点深度依次增大,且中序遍历 Splay 得到的每个点的深度序列严格递增。单独的一个点也可以是一棵 Splay。
- 举个例子,这棵树的构造为
1(2,3)
,即 \(1\) 号节点为树根,深度为 \(1\),\(2,3\) 号节点分别为它的左右儿子,深度为 \(2\)。那么这个 Splay 森林可以是这样的:
- \(\texttt{[1,2][3]}\),第一棵 Splay 维护 \(1 \to 2\) 这条路径,深度单调递增(\(1,2\)),第二棵维护 \(3\),单独的一个点。
- \(\texttt{[1,3][2]}\),第一棵 Splay 维护 \(1 \to 3\) 这条路径,深度单调递增(\(1,2\)),第二棵维护 \(2\),单独的一个点。
- \(\texttt{[1][2][3]}\),三个点都为一棵独立的 Splay。
注意 \(\texttt{[1,2,3]}\) 这棵 Splay 是不合法的,因为 \(2,3\) 的深度相等。
- 举个例子,这棵树的构造为
每个节点被包含且仅被包含在一棵Splay 内。
由以上两条性质我们可以得出,每个节点只能和它的儿子连一条实边,其余的儿子都和他连虚边,并且每一条虚边的儿子所在的 Splay 要指向这个节点。但是这个节点并不能指向其儿子的 Splay(即 FlashHu 博客中的认父不认子)。
- 具体操作
- \(\text{access}(x)\)
LCT 最核心的操作。
打通根节点和指定节点的路径,即把根节点和 \(x\) 中间的路径都变成 实边,形成一条以根节点开始,指定节点结束的 Splay。
来几张图 \(^{\texttt{[2]}}\):
假设一开始实边和虚边是这么划分的:
那么所形成的 Splay 森林可能是这样的(绿框中为一个 Splay):
现在我们要 \(\text{access(N)}\),把 \(\text{A} \to \text{N}\) 的路径都打通成实边,变成一颗 Splay。
根据性质 3,原来有些实边要变虚(因为 \(\text{A} \to \text{N}\) 的有些虚边要变实,同层只能有一条实边连向父亲)。那么原树可能要变成这样:
我们一步一步自底向上拉。
首先 \(\text{splay(N)}\),把 \(\text{N}\) 转到所在 Splay 的根。
因为要 以指定节点结束,所以比他深且在一颗 Splay 中的点要去除。
因为性质 1,中序遍历 Splay 得到的每个点的深度序列严格递增,所以我们把 \(\text{N}\) 右边的点去掉即可。即把 \(\text{N} \to \text{O}\) 这条边变虚。直接把 \(\text{N}\) 的右子树变空,然后让 \(\text{O}\) 所在 Splay 指向 \(\text{N}\) 即可。
如下图:
接下来要打通 \(\text{I} \to \text{L}\) 的边,首先找到 \(\text{N}\) 所在 Splay 指向的节点 \(\text{I}\),并 \(\text{splay(I)}\),让 \(\text{I}\) 转到其所在 Splay 的树根,这样保证它的右儿子肯定是它在原树中连的虚边(性质 1),把它的右子树置空。
然后就可以连接 \(\text{I} \to \text{L}\) 了,因为 \(\text{L}\) 所指向的点是 \(\text{I}\),把 \(\text{N}\) 直接连到 \(\text{I}\) 的右子树即可。
\(\text{I}\) 指向 \(\text{H}\),接着 \(\text{splay(H)}\),把 \(\text{H}\) 的右子树直接置为 \(\text{I}\) 即可。
\(\text{H}\) 指向 \(\text{A}\),于是 \(\text{splay(A)}\),把 \(\text{A}\) 的右子树更新成 \(\text{H}\)。
于是 \(\text{A} \to \text{N}\) 就在一个 Splay 里了,且正好中序遍历以 \(\text{A}\) 开始,以 \(\text{N}\) 结束。
代码很简单,只需要四步:
- \(\text{splay}\) 当前节点,转到根。
- 找到它所指的父亲,换右儿子。
- 更新信息,
pushup
。 - 把当前节点变成它的轻边所指的父亲,转 \(1\)。
inline void access(int x){
for(int y=0;x;y=x,x=fa[x])
splay(x),ch[x][1]=y,pushup(x);
}
- \(\text{makeroot}(x)\)
- 把 \(x\) 拉到整棵树的根。
在介绍 \(\text{makeroot}\) 前,先来回顾一下 Splay 的区间反转操作,不熟悉的可以看一下模板题。
- \(\text{pushr(x)}\)
我们注意到,将 \([l,r]\) 这一段区间反转,相当于对于 \(l \le id \le r\) 的每一个节点的左右子树自上而下 反转。
引用几张图 \(^{\texttt{[3]}}\):
这是一棵树,那么如果我们想翻转 \([2,4]\) 这个区间,只需要 \(\text{splay}\) \(1\) 和 \(5\),使得 \(5\) 的左子树都是 \(>1\) 且 \(<5\) 的(二叉平衡树的性质),于是只需要反转 \([2,4]\) 的左右子树了。
但在这个地方我们可以考虑打个标记,标记的存在就只在于记录现在对于当前节点应不应该翻转两个子树。
接下来回到 \(\text{makeroot}\)。
首先显然要把根节点到 \(x\) 的路径打通,否则根节点和 \(x\) 都不在一棵 Splay 中,谈何换根。
所以我们先 \(\text{access}(x)\),然后根节点到 \(x\) 就是一条实路径,且中序遍历以根节点开头,以 \(x\) 结尾。不难发现此时 \(x\) 就是这颗 Splay 中深度最深的点。然后我们先 \(\text{splay}(x)\),使得 \(x\) 节点为这颗 Splay 的根,(注意不是整棵树的根,因为先序遍历仍以原先根节点开始)。这时候 \(x\) 没有右子树。因为 \(x\) 的深度最深,这时候我们翻转一下,\(\text{pushr}\),把这一棵 Splay 深度都改变,这时候 \(x\) 就变成的这棵树最上面的节点(真正的根,它没有左子树),大功告成。
inline void pushr(int x){
swap(lc(x),rc(x));
r[x]^=1;
}
inline void makeroot(int x){
access(x); splay(x);
pushr(x);
}
- \(\text{findroot}(x)\)
- 找到 \(x\) 所在原树的根,主要用来判断两点的连通性(即如果 \(\text{findroot}(x)=\text{findroot}(y)\) 表明 \(x,y\) 在一棵树中)。
我们先把根节点到 \(x\) 的路径打通,然后 \(\text{splay}(x)\),把 \(x\) 转到这棵 Splay 的根(不是原树的根,没有破坏结构),这时候根据二叉排序树的性质,所有深度比 \(x\) 小的点都在 \(x\) 的左子树,循环找下去,直到叶节点即可。
注意往下找左儿子的时候,一定要下放翻转标记,不然可能会导致 Splay 信息不正确。
inline int findroot(int x){
access(x); splay(x);
while(lc(x)) pushdown(x),x=lc(x); // 一定要 pushdown!
splay(x); // 保证复杂度
return x;
}
- \(\text{split}(x,y)\)
- 指定出一条 \(x \to y\) 路径的 Splay。
先 \(\text{makeroot}(x)\),把 \(x\) 变成当前树的根,然后 \(\text{access}(y)\),提取 \(x \to y\) 的路径。最后 \(\text{splay}(y)\) 保证复杂度。这样访问这个 Splay 的时候只需要访问 \(y\) 就可以了。
inline void split(int x,int y){
makeroot(x); access(y);
splay(y);
}
- \(\text{nroot}(x)\)
- 判断当前节点是否是它所在 Splay 的根。
原理很简单,如果他是 Splay 的根(即它和它的父亲连的是虚边),它的父亲的儿子里没有它(它的父亲连到它的实儿子了)。
如果返回 true
,就说明它不是根。
inline bool nroot(int x){
return lc(fa[x])==x || rc(fa[x])==x;
}
- \(\text{link}(x,y)\)
- 连上 \(x \to y\) 的边。
可以自行决定把 \(x\) 的父亲设为 \(y\) 还是把 \(y\) 的父亲设为 \(x\),这里我把 \(x\) 的父亲设为 \(y\),即在 \(x,y\) 间连一条轻边。
代码也很简单,如下:
inline bool link(int x,int y){
makeroot(x); // 使 x 成为它所在的树的根
if(findroot(y)==x) return 0; // 两点已在一棵树内,连边不合法
fa[x]=y;
return 1;
}
如果题目保证连边合法,代码就可以更简单:
inline void link(int x,int y){
makeroot(x);
fa[x]=y;
}
- \(\text{cut}(x,y)\)
断开 \(x \to y\) 的边。
如果题目保证合法,这个操作倒是很容易。
先提取出 \(x \to y\) 的路径(即 \(\text{split}(x,y)\)),然后因为 \(y\) 变成了 Splay 的根(见 \(\text{split}\) 那一段,最后有说明),\(x\) 必在它的左子树上
(关于左子树有必要做个说明:因为我们是先 \(\text{makeroot}(x)\),然后 \(\text{access}(y)\) 的,所以\(x\) 在 Splay 中深度一定比 \(y\) 浅,于是当 \(\text{splay}(y)\) 之后,\(x\) 必在它的左子树)。
于是代码就有了:
inline bool cut(int x,int y){
split(x,y);
fa[x]=lc(y)=0;
pushup(y); // y少了个儿子
}
但是如果没有保证连边合法呢?
我们先要看 \(x,y\) 是否在一棵 Splay 中(否则原来就断开的,不合法)。
然后我们要看 \(x,y\) 有无父子关系,不然不合法。
最后我们要看中序遍历下,\(x,y\) 中间有无其他节点(即 \(y\) 有没有右子树)。
三个关系都满足就可以了。
这里注意 \(\text{findroot}(y)\) 之后 \(x\) 是原树的树根,而且因为 \(\text{findroot}\) 里先 \(\text{access}(y)\) 的,所以 \(y\) 一定在 \(x\) 的右子树。
inline bool cut(int x,int y){
makeroot(x);
if(findroot(y)!=x || fa[y]!=x || lc(y)) return 0;
fa[y]=rc(x)=0;
pushup(x);
return 1;
}
至此,LCT 的基本操作就讲完啦!
LCT 中不同于普通 Splay 的几个点
\(\text{splay}\) 时,一定要先判断要转的点是不是根!
- 否则你会发现
fa[x]=0
且fa[fa[x]]=0
,然后你的 Splay 就寄了。
- 否则你会发现
\(\text{splay}\) 前要先堆栈下放标记。
- 否则你会发现你的 Splay 标记乱成一团,又寄了 \(\texttt{:(}\)。
完整代码
模板题:https://www.luogu.com.cn/problem/P3690。
维护其他什么操作的话改一下 pushup
即可。
#include <bits/stdc++.h>
using namespace std;
inline char gc(){
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int read(){
char ch=gc(); int x=0; bool f=0;
while(!(ch>='0'&&ch<='9'))f|=(ch=='-'),ch=gc();
while(ch>='0'&&ch<='9')x=(x<<1)+(x<<3)+(ch^48),ch=gc();
return f?-x:x;
}
const int N = 2e5+5;
class _lct{
#define lc(x) ch[x][0]
#define rc(x) ch[x][1]
public:
int ch[N][2],val[N],fa[N],s[N],stk[N];
bool r[N];
inline bool nroot(int x){
return lc(fa[x])==x || rc(fa[x])==x;
}
inline void pushr(int x){
swap(lc(x),rc(x));
r[x]^=1;
}
inline void pushup(int x){
s[x]=s[lc(x)]^s[rc(x)]^val[x];
}
inline void pushdown(int x){
if(r[x]){
if(lc(x)) pushr(lc(x));
if(rc(x)) pushr(rc(x));
r[x]=0;
}
}
inline void rotate(int x){
int y=fa[x],z=fa[y];
int k=rc(y)==x,w=ch[x][!k];
if(nroot(y)) ch[z][rc(z)==y]=x; ch[x][!k]=y; ch[y][k]=w;
if(w) fa[w]=y; fa[x]=z,fa[y]=x;
pushup(y);
}
inline void splay(int x){
int y=x,z=0;
stk[++z]=y;
while(nroot(y)) stk[++z]=y=fa[y];
while(z) pushdown(stk[z--]);
while(nroot(x)){
y=fa[x]; z=fa[y];
if(nroot(y)) rotate((lc(z)==y)^(lc(y)==x)?x:y);
rotate(x);
}
pushup(x);
}
inline void access(int x){
for(int y=0;x;x=fa[y=x])
splay(x),rc(x)=y,pushup(x);
}
inline void makeroot(int x){
access(x); splay(x);
pushr(x);
}
inline int findroot(int x){
access(x); splay(x);
while(lc(x)) pushdown(x),x=lc(x);
splay(x);
return x;
}
inline void split(int x,int y){
makeroot(x); access(y);
splay(y);
}
inline bool link(int x,int y){
makeroot(x);
if(findroot(y)==x) return 0;
fa[x]=y;
return 1;
}
inline bool cut(int x,int y){
makeroot(x);
if(findroot(y)!=x || fa[y]!=x || lc(y)) return 0;
fa[y]=rc(x)=0;
pushup(x);
return 1;
}
}lct;
int n,m;
int main(){
n=read(); m=read();
for(int i=1;i<=n;i++) lct.val[i]=read();
while(m--){
int opt,x,y;
opt=read(); x=read(); y=read();
switch(opt){
case 0:{lct.split(x,y); printf("%d\n",lct.s[y]); break;}
case 1:{lct.link(x,y); break;}
case 2:{lct.cut(x,y); break;}
case 3:{lct.splay(x); lct.val[x]=y; break;}
}
}
return 0;
}
- Reference
\(\texttt{[1]}\):因为 LCT 的 makeroot
等操作需要翻转一棵树,使得 Treap 等平衡树均已不适用,但是 FHQ Treap 或许也可以维护,详见 https://immortalco.blog.uoj.ac/blog/2342。
\(\texttt{[2]}\):引自 https://www.cnblogs.com/flashhu/p/8324551.html
\(\texttt{[3]}\):引自 https://www.luogu.com.cn/blog/pks-LOVING/splay-chu-li-ou-jian-cao-zuo-fan-zhuai-cao-zuo-reverse
【学习笔记】动态树 Link-Cut Tree的更多相关文章
- 动态树(Link Cut Tree) :SPOJ 375 Query on a tree
QTREE - Query on a tree #number-theory You are given a tree (an acyclic undirected connected graph) ...
- 【学习笔记】LCT link cut tree
大概就是供自己复习的吧 1. 细节讲解 安利两篇blog: Menci 非常好的讲解与题单 2.模板 把 $ rev $ 和 $ pushdown $ 的位置记清 #define lc son[x][ ...
- 学习笔记-动态树Link-Cut-Tree
--少年你有梦想吗? --少年你听说过安利吗? 安利一个集训队讲解:http://wenku.baidu.com/view/75906f160b4e767f5acfcedb 关于动态树问题,有多种方法 ...
- LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...
- Link Cut Tree学习笔记
从这里开始 动态树问题和Link Cut Tree 一些定义 access操作 换根操作 link和cut操作 时间复杂度证明 Link Cut Tree维护链上信息 Link Cut Tree维护子 ...
- P3690 【模板】Link Cut Tree (动态树)
P3690 [模板]Link Cut Tree (动态树) 认父不认子的lct 注意:不 要 把 $fa[x]$和$nrt(x)$ 混 在 一 起 ! #include<cstdio> v ...
- 【刷题】洛谷 P3690 【模板】Link Cut Tree (动态树)
题目背景 动态树 题目描述 给定n个点以及每个点的权值,要你处理接下来的m个操作.操作有4种.操作从0到3编号.点从1到n编号. 0:后接两个整数(x,y),代表询问从x到y的路径上的点的权值的xor ...
- LuoguP3690 【模板】Link Cut Tree (动态树) LCT模板
P3690 [模板]Link Cut Tree (动态树) 题目背景 动态树 题目描述 给定n个点以及每个点的权值,要你处理接下来的m个操作.操作有4种.操作从0到3编号.点从1到n编号. 0:后接两 ...
- 学习笔记:Link Cut Tree
模板题 原理 类似树链剖分对重儿子/长儿子剖分,Link Cut Tree 也做的是类似的链剖分. 每个节点选出 \(0 / 1\) 个儿子作为实儿子,剩下是虚儿子.对应的边是实边/虚边,虚实时可以进 ...
- LG3690 【模板】Link Cut Tree (动态树)
题意 给定n个点以及每个点的权值,要你处理接下来的m个操作.操作有4种.操作从0到3编号.点从1到n编号. 0:后接两个整数(x,y),代表询问从x到y的路径上的点的权值的xor和.保证x到y是联通的 ...
随机推荐
- static 关键字分析
在java中static 关键字用途很广,可以修饰成员变量 方法 甚至类(静态内部类),这里不分析static 修饰类 static修饰的内容的运行顺序 java的程序执行之前有一个类的加载的过程,在 ...
- ubuntu 安装anaconda3
ubuntu 安装anaconda3 官网:https://www.anaconda.com/ 下载:https://www.anaconda.com/products/individual#Down ...
- Vue3 企业级优雅实战 - 组件库框架 - 1 搭建 pnpm monorepo
前两篇文章分享了基于 vite3 vue3 的组件库基础工程 vue3-component-library-archetype 和用于快速创建该工程的工具 yyg-cli,但在中大型的企业级项目中,通 ...
- java学习之socket编程
0x00前言和思维导图 Socks实际上是什么:实际上是提供了精彩通信的端口,在通信之前双方都必须要创造一个端点才能通信,其实感觉socket跟计算机的三次握手有些相似,分为三个步骤: (1)服务器监 ...
- 【NGINX】浅尝
Introduction Nginx is a web server that can also be used as a reverse proxy, load balancer, mail pro ...
- Linux网络通信(线程池和线程池版本的服务器代码)
线程池 介绍 线程池: 一种线程使用模式.线程过多会带来调度开销,进而影响缓存局部性和整体性能.而线程池维护着多个线程,等待着监督管理者分配可并发执行的任务.这避免了在处理短时间任务时创建与销毁线程的 ...
- 解决Halcon转C#时,图像显示的问题
不知道大家在使用Halcon进行图像处理,由于要连续处理多张图片,转为C#代码的时候,使用了Halcon控件显示图像,但是运行的时候,中间的其他图片没有显示在控件上,之前我一直以为是运行速度快导致看不 ...
- dlv远端调试go的问题
1.golang采用dlv 时提示 "could not launch process: could not open debug info " 在用dlv 远程debug 代码时 ...
- 决策树(二):后剪枝,连续值处理,数据加载器:DataLoader和模型评估
在上一篇文章中,我们实现了树的构造,在下面的内容中,我们将中心放在以下几个方面 1.剪枝 2.连续值处理 3.数据加载器:DataLoader 4.模型评估 一,后剪枝 • 为什么剪枝 –" ...
- day19-web开发会话技术01
WEB开发会话技术01 1.会话 Web开发中,用到的4种会话跟踪技术 - 博客园 (cnblogs.com) 会话的基本介绍 什么是会话? 会话可简单理解为:用户开一个浏览器,点击多个超链接,访问服 ...