题目看似与线性方程组无关,但可以通过建模转化为线性方程组的问题。

对于一块砖,刷两次是没有必要的,我们令x=1表示刷了一次,x=0没有刷,一共有n*n个,所以相当于有n*n个未知量x。

定义aij表示i和j的关系,是邻居则为1,否则是0;我们又用0表示黄色,1表示白色,一个方格最后的颜色,取决于它的初始颜色和所有他的邻居格子的异或操作情况。

就可以得到n*n个方程,a为系数,x为变量,每个方程的含义就是代表每个格子与邻居格子异或之后为0(黄色)。

x=1,表示这个格子被刷了一次,统计所有x=1的数量就是答案。

 1 #include<cstdio>
2 #include<iostream>
3 #include<cstring>
4 using namespace std;
5 int a[230][230],d[5][2]={{0,0},{-1,0},{1,0},{0,-1},{0,1}};
6 int T,n;
7
8 bool gauss(){
9 int r,c;
10 for(r=0,c=0;c<n*n;c++){
11 int t=r;
12 for(int i=r;i<n*n;i++)
13 if(a[i][c]){t=i;break;}
14 if(!a[t][c]) continue;
15 for(int i=c;i<=n*n;i++) swap(a[t][i],a[r][i]);
16 for(int i=r+1;i<n*n;i++)
17 if(a[i][c])
18 for(int j=c;j<=n*n;j++)
19 a[i][j]^=a[r][j];
20 r++;
21 }
22 for(int i=r;i<n*n;i++)
23 if(a[i][n*n]) return false;
24 for(int i=n*n-1;i>=0;i--)
25 for(int j=i+1;j<n*n;j++)
26 a[i][n*n]^=a[i][j]&a[j][n*n];
27 return true;
28 }
29
30 int main(){
31 char c;
32 scanf("%d",&T);
33 while(T--){
34 scanf("%d",&n);
35 memset(a,0,sizeof(a));
36 for(int i=0;i<n;i++)
37 for(int j=0;j<n;j++)
38 for(int k=0;k<5;k++){
39 int x=i+d[k][0],y=j+d[k][1];
40 if(x>=0&&y>=0&&x<n&&y<n)
41 a[i*n+j][x*n+y]=1;
42 }
43 for(int i=0;i<n*n;i++){
44 scanf(" %c",&c);
45 if(c=='w') a[i][n*n]=1;
46 if(c=='y') a[i][n*n]=0;
47 }
48 int ans=gauss();
49 if(!ans) printf("inf\n");
50 else{
51 int ans=0;
52 for(int i=0;i<n*n;i++)
53 if(a[i][n*n]==1) ans++;
54 printf("%d\n",ans);
55 }
56 }
57 }

POJ1681 Painter's Problem(高斯消元)的更多相关文章

  1. POJ 1681 Painter's Problem (高斯消元)

    题目链接 题意:有一面墙每个格子有黄白两种颜色,刷墙每次刷一格会将上下左右中五个格子变色,求最少的刷方法使得所有的格子都变成yellow. 题解:通过打表我们可以得知4*4的一共有4个自由变元,那么我 ...

  2. POJ 1681 Painter's Problem [高斯消元XOR]

    同上题 需要判断无解 需要求最小按几次,正确做法是枚举自由元的所有取值来遍历变量的所有取值取合法的最小值,然而听说数据太弱自由元全0就可以就水过去吧.... #include <iostream ...

  3. poj 1681 Painter&#39;s Problem(高斯消元)

    id=1681">http://poj.org/problem? id=1681 求最少经过的步数使得输入的矩阵全变为y. 思路:高斯消元求出自由变元.然后枚举自由变元,求出最优值. ...

  4. POJ 1681 Painter's Problem 【高斯消元 二进制枚举】

    任意门:http://poj.org/problem?id=1681 Painter's Problem Time Limit: 1000MS   Memory Limit: 10000K Total ...

  5. POJ 1681 Painter's Problem(高斯消元+枚举自由变元)

    http://poj.org/problem?id=1681 题意:有一块只有黄白颜色的n*n的板子,每次刷一块格子时,上下左右都会改变颜色,求最少刷几次可以使得全部变成黄色. 思路: 这道题目也就是 ...

  6. POJ - 1681: Painter's Problem (开关问题-高斯消元)

    pro:开关问题,同上一题. 不过只要求输出最小的操作步数,无法完成输出“inf” sol:高斯消元的解对应的一组合法的最小操作步数. #include<bits/stdc++.h> #d ...

  7. POJ 1681---Painter's Problem(高斯消元)

    POJ   1681---Painter's Problem(高斯消元) Description There is a square wall which is made of n*n small s ...

  8. 高斯消元几道入门题总结POJ1222&&POJ1681&&POJ1830&&POJ2065&&POJ3185

    最近在搞高斯消元,反正这些题要么是我击败了它们,要么就是这些题把我给击败了.现在高斯消元专题部分还有很多题,先把几道很简单的入门题总结一下吧. 专题:http://acm.hust.edu.cn/vj ...

  9. Problem A: Apple(高斯消元)

    可以发现具有非常多的方程, 然后高斯消元就能85分 然而我们发现这些方程组成了一些环, 我们仅仅设出一部分变量即可获得N个方程, 就可以A了 trick 合并方程 #include <cstdi ...

  10. HDU 4818 RP problem (高斯消元, 2013年长春区域赛F题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4818 深深地补一个坑~~~ 现场赛坑在这题了,TAT.... 今天把代码改了下,过掉了,TAT 很明显 ...

随机推荐

  1. python subprocess相关操作

    python subprocess常用操作 1.subprocess模块的常用函数 函数 描述 subprocess.run() Python 3.5中新增的函数.执行指定的命令,等待命令执行完成后返 ...

  2. SpringBoot 如何集成 MyBatisPlus - SpringBoot 2.7.2实战基础

    SpringBoot 2.7.2 学习系列,本节通过实战内容讲解如何集成 MyBatisPlus 本文在前文的基础上集成 MyBatisPlus,并创建数据库表,实现一个实体简单的 CRUD 接口. ...

  3. Spring的Model 和 Map的原理

    Model 和 Map 为什么在Model和Map中放值传入后会出现在request的上面. 9.1.源码解析 准备测试代码 @GetMapping("/goto") public ...

  4. 红黑树以及JAVA实现(一)

    目录 前言 一. B树 1.1 概念 1.2 2-3-4树 1.3 2-3-4树的插入 节点分类 1.4 2-3-4树的删除 1.4.1 当删除节点是叶子节点 1.4.1.1 当删除节点为非2节点 1 ...

  5. linux项目环境部署入门

    linux目录 /bin 二进制可执行命令 (ls,cat,mkdir等) /dev 设备特殊文件/etc 系统管理和配置文件/etc/rc.d 启动的配置文件和脚本 /opt 额外安装的可选应用程序 ...

  6. 持久化-Powershell配置文件持久性

    持久化-Powershell配置文件持久性 概述 可以使用Powershell配置文件进行持久性和/或特权升级. 执行 获取可以滥用的powershell配置文件,这取决于你拥有的权限. $PROFI ...

  7. 【HTML】学习路径2-设置文档类型、网页编码、文件注释

    第一章:设置文档类型 我们通常在html文件最前面写一行: <!DOCTYPE html> 这玩意有啥用? https://developer.mozilla.org/zh-CN/docs ...

  8. ASP.NET Core 6框架揭秘实例演示[34]:缓存整个响应内容

    我们利用ASP.NET开发的大部分API都是为了对外提供资源,对于不易变化的资源内容,针对某个维度对其实施缓存可以很好地提供应用的性能.<内存缓存与分布式缓存的使用>介绍的两种缓存框架(本 ...

  9. 在 node 中使用 jquery ajax

    对于前端同学来说,ajax 请求应该不会陌生.jquery 真的ajax请求做了封装,可以通过下面的方式发送一个请求并获取相应结果: $.ajax({ url: "https://echo. ...

  10. npm 和 maven 使用 Nexus3 私服 | 前后端一起学

    前文<Docker 搭建 Nexus3 私服 >介绍了在 docker 环境下安装 nexus3 以及 nexus3 的基本操作和管理,本文分别介绍 npm(前端)和 maven(后端)如 ...