Numpy 01
Infi-chu:
http://www.cnblogs.com/Infi-chu/
import numpy as np # 创建的数组
stus_score = np.array([[80, 88], [82, 81], [84, 75], [86, 83], [75, 81]]) # 基本属性
count = stus_score.size
print('该数组的元素有 --> ',count)
shape = stus_score.shape
print('该数组的形状是 --> ',shape) # shape结果的第一个元素是行,第二个元素是列
ndim = stus_score.ndim
print('该数组的维度 --> ',ndim)
type = stus_score.dtype
print('该数组元素类型是 --> ',type) # 快速创建n维数组的API函数
# 创建10行10列的数值为浮点1的矩阵
array_one = np.ones([10,10])
print('array_one --> ',array_one)
# 创建10行10列的数值为浮点1的矩阵
array_zero = np.zeros([10,10])
print('array_zero --> ',array_zero) # Numpy创建随机数组
# 均值分布
'''
np.random.rand(10, 10)创建指定形状(示例为10行10列)的数组(范围在0至1之间)
np.random.uniform(0, 100)创建指定范围内的一个数
np.random.randint(0, 100) 创建指定范围内的一个整数
''' # 正态分布
'''
给定均值/标准差/维度的正态分布np.random.normal(1.75, 0.1, (2, 3))
''' # 数组索引、切片
# 正态生成4行5列的二维数组
arr = np.random.normal(1.75, 0.1, (4, 5))
print(arr)
# 截取第1至2行的第2至3列(从第0行算起)
after_arr = arr[1:3, 2:4]
print(after_arr) # 改变数组形状(要求前后元素个数匹配)
print("reshape函数的使用!")
one_20 = np.ones([20])
print("-->1行20列<--")
print (one_20)
one_4_5 = one_20.reshape([4, 5])
print("-->4行5列<--")
print (one_4_5) # 数组的计算
# 比较
res = stus_score > 80
print(res)
res = np.where(stus_score > 80)
print(res)
res = np.where(stus_score > 80,'Yes','No') # 大于80的重写为Yes,否则为No
print(res)
# 求最大值
print('数组是:\n',stus_score)
# 求每一列的最大值(0表示列)
result = np.amax(stus_score, axis=0)
print("每一列的最大值为:\n",result)
# 求每一行的最大值(1表示列)
result = np.amax(stus_score, axis=1)
print("每一行的最大值为:\n",result)
# 求最小值
# 求每一行的最小值(0表示列)
print("每一列的最小值为:")
result = np.amin(stus_score, axis=0)
print(result)
# 求每一行的最小值(1表示行)
print("每一行的最小值为:")
result = np.amin(stus_score, axis=1)
print(result)
# 求平均值
# 求每一行的平均值(0表示列)
print("每一列的平均值:")
result = np.mean(stus_score, axis=0)
print(result)
# 求每一行的平均值(1表示行)
print("每一行的平均值:")
result = np.mean(stus_score, axis=1)
print(result)
# 求方差
# 求每一行的方差(0表示列)
print("每一列的方差:")
result = np.std(stus_score, axis=0)
print(result)
# 求每一行的方差(1表示行)
print("每一行的方差:")
result = np.std(stus_score, axis=1)
print(result) # 数组的运算
# 加法
print("加分前:")
print(stus_score)
# 为所第一列成绩都加5分
stus_score[:, 0] = stus_score[:, 0]+5
stus_score_new = stus_score[:, 0]+5
print("加分后:")
print(stus_score)
print('')
print(stus_score_new)
# 乘法
print("减半前:")
print(stus_score)
# 平时成绩减半
stus_score[:, 0] = stus_score[:, 0]*0.5
print("减半后:")
print(stus_score)
# 数组间运算
a = np.array([1, 2, 3, 4])
b = np.array([10, 20, 30, 40])
c = a + b
d = a - b
e = a * b
f = a / b
print("a+b为", c)
print("a-b为", d)
print("a*b为", e)
print("a/b为", f) # np.dot()
# (M行, N列) * (N行, Z列) = (M行, Z列)
# 平时成绩占40% 期末成绩占60%, 计算结果
q = np.array([[0.4], [0.6]])
result = np.dot(stus_score, q)
print("最终结果为:")
print(result) # 矩阵拼接
# 垂直拼接
print("v1为:")
v1 = [[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11]]
print(v1)
print("v2为:")
v2 = [[12, 13, 14, 15, 16, 17], [18, 19, 20, 21, 22, 23]]
print(v2)
result = np.vstack((v1, v2))
print("v1和v2垂直拼接的结果为:")
print(result)
# 水平拼接
print("v1为:")
v1 = [[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11]]
print(v1)
print("v2为:")
v2 = [[12, 13, 14, 15, 16, 17], [18, 19, 20, 21, 22, 23]]
print(v2)
result = np.hstack((v1, v2))
print("v1和v2水平拼接的结果为")
print(result)
Numpy 01的更多相关文章
- Numpy | 01 简介
NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库. NumPy 是一个运行速度非常快的数学库 ...
- 01. Numpy模块
1.科学计算工具-Numpy基础数据结构 1.1.数组ndarray的属性 NumPy数组是一个多维数组对象,称为ndarray.其由两部分组成:① 实际的数据② 描述这些数据的元数据 注意数组格式, ...
- [Pandas] 01 - A guy based on NumPy
主要搞明白NumPy“为什么快”. 学习资源 Panda 中文 易百教程 远程登录Jupyter笔记本 效率进化 四步效率优化 NumPy 底层进行了不错的优化. %timeit 对于任意语句,它会自 ...
- 数据分析01 /numpy模块
数据分析01 /数据分析之numpy模块 目录 数据分析01 /数据分析之numpy模块 1. numpy简介 2. numpy的创建 3. numpy的方法 4. numpy的常用属性 5. num ...
- 18-09-21 numpy 的基础学习01
# 1关于numpy 的学习import numpy as np # 一 如何创建数组****# 1 有规律的一维数据的创建======# 1 range() 和arange() 区别 貌似没有区别l ...
- 01 numpy库(一)
01-numpy NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库. NumPy 是一个运行 ...
- 01.Numpy数组的基本应用
数组的创建 数组的访问 数组的合并 数组的分割 数组创建 >>> import numpy as np 创建一维数组 >>> x = np.arange(10) & ...
- numpy学习笔记 01
NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库. NumPy 是一个运行速度非常快的数学库 ...
- 《利用python进行数据分析》读书笔记--第四章 numpy基础:数组和矢量计算
http://www.cnblogs.com/batteryhp/p/5000104.html 第四章 Numpy基础:数组和矢量计算 第一部分:numpy的ndarray:一种多维数组对象 实话说, ...
随机推荐
- IEEP部署企业级网络工程-OSPF邻居关系故障排除
OSPF邻居关系故障-现象与排除 一.OSPF邻居关系故障-现象与排除 1.OSPF建立邻居关系时,将检验hello报文中的Area ID .Autype.Authentication.network ...
- msvcr100.dll问题描述及修复方式
出现问题的大部分原因是因该文件被木马病毒破坏导致系统找不到此文件,出现错误提示框,想要解决此问题只需找到专业的DLL文件下载网站,下载该文件,复制到相应目录.即可解决.msvcr100.dll为Vis ...
- 使用MongoDB血泪般的经验教训
故事背景,天书世界,现在项目已经属于成熟维护期,是时候总结一下当时的想法 第一个问题,为什么使用mongodb? 数据库对于游戏项目本身的要求与传统业务系统差异较大,所以nosql的弱结构性对于我那是 ...
- June 19th 2017 Week 25th Monday
Everyone is dissatisfied with his own fortune. 人对自己的命运总是感到不满足. We always want more, even when we hav ...
- C#中的"?"和"??"
摘自:http://www.cnblogs.com/zxjyuan/archive/2009/10/27/1590795.html 如果你看到C#中的“?”问号脑袋里便充满问号,那么这个贴子便是为你而 ...
- 如何在SAP里创建configurable material物料主数据
(1) 使用tcode CT04创建characteristic: assign 所有可能的color value: (2) 使用tcode CL02创建class. 类型选择300- variant ...
- Python之Dict和Set类型(入门5)
转载请标明出处: http://www.cnblogs.com/why168888/p/6407905.html 本文出自:[Edwin博客园] Python之Dict和Set类型 1. Python ...
- 记录linux查询命令的一个网站
http://man.linuxde.net/ 另外下面是对常用命令的总结 https://www.cnblogs.com/soyxiaobi/p/9717483.html
- xml-apis-ext.jar
xml-apis-ext.jar,hightcharts导出图片是解决乱码需要用到的一个包
- IntelliJ IDEA自动补全变量名称和属性名称的快捷键
自动补全变量名称 : Ctrl + Alt + v 自动补全属性名称 : Ctrl + Alt + f