论文笔记 《Maxout Networks》 && 《Network In Network》

发表于 2014-09-22   |   1条评论

出处

maxout:http://arxiv.org/pdf/1302.4389v4.pdf
NIN:http://arxiv.org/abs/1312.4400

参考

maxout和NIN具体内容不作解释下,可以参考:
Deep learning:四十五(maxout简单理解)
Network In Network

各用一句话概括

  • 常规卷积层: conv→relu
  • maxout: several conv(full)→max
  • NIN: serveral conv(full)→relu→conv(1x1)→relu

具体一点

  • 常规卷积层:conv→relu

    • conv: conv_out=∑(x·w)
    • relu: y=max(0, conv_out)
  • maxout:several conv(full)→max
    • several conv (full): conv_out1 = x·w_1, conv_out2 = x·w_2, …
    • max: y = max(conv_out1, conv_out2, …)
  • NIN: conv→relu→conv(1x1)→relu
    • several conv (full): conv_out1 = x·w_1, conv_out2 = x·w_2, …
    • relu: relu_out1 = max(0, conv_out1), relu_out2 = max(0, conv_out2), …
    • conv(1x1): conv_1x1_out = [relu_out1, relu_out2, …]·w_1x1
    • relu: y = max(0, conv_1x1_out)

举例子解释

假设现在有一个3x3的输入,用一个9维的向量x代表,卷积核大小也是3x3,也9维的向量w代表。

  • 对于常规卷积层,直接x和w求卷积,然后relu一下就好了。
  • maxout,有k个的3x3的w(这里的k是自由设定的),分别卷积得到k个1x1的输出,然后对这k个输入求最大值
  • NIN,有k个3x3的w(这里的k也是自由设定的),分别卷积得到k个1x1的输出,然后对它们都进行relu,然后再次对它们进行卷积,结果再relu。(这个过程,等效于一个小型的全连接网络)

图例

继续渣手绘,从上到下分别对应常规卷积层,maxout,NIN:

总结

总的来说,maxout和NIN都是对传统conv+relu的改进。
maxout想表明它能够拟合任何凸函数,也就能够拟合任何的激活函数(默认了激活函数都是凸的)
NIN想表明它不仅能够拟合任何凸函数,而且能够拟合任何函数,因为它本质上可以说是一个小型的全连接神经网络

论文笔记 《Maxout Networks》 && 《Network In Network》的更多相关文章

  1. 《Vision Permutator: A Permutable MLP-Like ArchItecture For Visual Recognition》论文笔记

    论文题目:<Vision Permutator: A Permutable MLP-Like ArchItecture For Visual Recognition> 论文作者:Qibin ...

  2. [place recognition]NetVLAD: CNN architecture for weakly supervised place recognition 论文翻译及解析(转)

    https://blog.csdn.net/qq_32417287/article/details/80102466 abstract introduction method overview Dee ...

  3. 论文笔记系列-Auto-DeepLab:Hierarchical Neural Architecture Search for Semantic Image Segmentation

    Pytorch实现代码:https://github.com/MenghaoGuo/AutoDeeplab 创新点 cell-level and network-level search 以往的NAS ...

  4. 论文笔记——Rethinking the Inception Architecture for Computer Vision

    1. 论文思想 factorized convolutions and aggressive regularization. 本文给出了一些网络设计的技巧. 2. 结果 用5G的计算量和25M的参数. ...

  5. 论文笔记:Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells

    Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells 2019-04- ...

  6. 论文笔记:ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware

    ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware 2019-03-19 16:13:18 Pape ...

  7. 论文笔记:DARTS: Differentiable Architecture Search

    DARTS: Differentiable Architecture Search 2019-03-19 10:04:26accepted by ICLR 2019 Paper:https://arx ...

  8. 论文笔记:Progressive Neural Architecture Search

    Progressive Neural Architecture Search 2019-03-18 20:28:13 Paper:http://openaccess.thecvf.com/conten ...

  9. 论文笔记:Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation

    Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation2019-03-18 14:4 ...

  10. 论文笔记系列-DARTS: Differentiable Architecture Search

    Summary 我的理解就是原本节点和节点之间操作是离散的,因为就是从若干个操作中选择某一个,而作者试图使用softmax和relaxation(松弛化)将操作连续化,所以模型结构搜索的任务就转变成了 ...

随机推荐

  1. 【套题】qbxt国庆刷题班D1

    Day1 事实上D1的题目还是比较简单的= =然而D1T2爆炸了就十分尴尬--错失一波键盘 看题 T1 传送门 Description 现在你手里有一个计算器,上面显示了一个数\(S\),这个计算器十 ...

  2. Ubuntu 14.04 64bit下Caffe + Cuda6.5/Cuda7.0 安装配置教程

    http://www.embeddedlinux.org.cn/emb-linux/entry-level/201612/21-6005.html 随着深度学习快速发展的浪潮,许多有兴趣的工作者都转入 ...

  3. 使用springcloud的feign调用服务时出现的错误:关于实体转换成json错误的介绍

    http://blog.csdn.net/java_huashan/article/details/46428971 原因:实体中没有添加无参的构造函数 fastjson的解释: http://www ...

  4. redis linux下的开机启动

    redis linux下的环境搭建  http://www.cnblogs.com/zsg88/p/8321644.html 安装完redis-4.0.1后设置linux开机自启动.    1.在re ...

  5. sql cmd命令执行sqlserver的sql文件

    有的时候,我们通过Log Explorer工具根据日志生成的回滚脚本,或者其他情况我们得到的脚本文件,通过sqlserver打开脚本文件的方式不爽,我们可以这样: 方式一: osql -S . -U ...

  6. C# 生成系统唯一号

    生成唯一号:思路,根据yymmddhhmmss+自增长号+唯一服务器号( SystemNo)生成唯一码,总长度19,例如:1509281204550000101. public class Uniqu ...

  7. Robot Framework 自定义关键字 Ignore error

    以上是关键字的完整写法. 一下是调用该关键字的实例.

  8. 【BZOJ】1486 [HNOI2009]最小圈

    [算法]二分+spfa [题解]据说这个叫分数规划? 0-1分数规划 二分答案a,则对于任意的环有w/k≤a即w-ak≤0,若满足条件则a变小,否则a变大. 因为w=w1+w2+...+wk,所以变形 ...

  9. SpringBoot Mybatis 读写分离配置(山东数漫江湖)

    为什么需要读写分离 当项目越来越大和并发越来大的情况下,单个数据库服务器的压力肯定也是越来越大,最终演变成数据库成为性能的瓶颈,而且当数据越来越多时,查询也更加耗费时间,当然数据库数据过大时,可以采用 ...

  10. vue 表格阻止父元素冒泡事件

    思路如下:1.给复选框定义一个类型,type="selection" 2.在点击函数中就可以使用判断条件来进行复选框的阻止冒泡.rowDetailShow(row, event, ...