YARN学习笔记——Overview and Architecture
- YARN的简介
- 什么是YARN
- MRv1的架构和缺陷
- 经典MapReduce的局限性
- 解决可伸缩性问题
- YARN的架构
- 一个可运行任何分布式应用程序的集群
- YARN中的应用程序提交
- YARN的其他特性
- 总结
YARN的简介
什么是YARN
Apache Hadoop YARN (Yet Another Resource Negotiator,另一种资源协调者)是一种新的 Hadoop 资源管理器,它是一个通用资源管理系统,可为上层应用提供统一的资源管理和调度。它将资源管理和处理组件分开,它的引入为集群在利用率、资源统一管理和数据共享等方面带来了巨大好处。
MRv1的架构和缺陷
Apache Hadoop 是一个开源软件框架,可安装在一个商用机器集群中,使机器可彼此通信并协同工作,以高度分布式的方式共同存储和处理大量数据。
经典 MapReduce的局限性
经典MapReduce最严重的限制:可伸缩性、资源利用、对不同工作负载的支持
在 MapReduce 框架中,作业执行受两种类型的进程控制:
- 一个称为 JobTracker 的主要进程,它协调在集群上运行的所有作业,分配要在 TaskTracker 上运行的 map 和 reduce 任务。
- 许多称为 TaskTracker 的下级进程,它们运行分配的任务并定期向 JobTracker 报告进度。
Apache Hadoop 的经典版本 (MRv1)
大型的 Hadoop 集群显现出了由单个 JobTracker 导致的可伸缩性瓶颈。依据 Yahoo!,在集群中有 5,000 个节点和 40,000 个任务同时运行时,这样一种设计实际上就会受到限制。由于此限制,必须创建和维护更小的、功能更差的集群。
此外,较小和较大的 Hadoop 集群都从未最高效地使用他们的计算资源。在 Hadoop MapReduce 中,每个从属节点上的计算资源由集群管理员分解为固定数量的 map 和 reduce slot,这些 slot 不可替代。设定 map slot 和 reduce slot 的数量后,节点在任何时刻都不能运行比 map slot 更多的 map 任务,即使没有 reduce 任务在运行。这影响了集群的利用率,因为在所有 map slot 都被使用(而且我们还需要更多)时,我们无法使用任何 reduce slot,即使它们可用,反之亦然。
解决可伸缩性问题
在Hadoop MapReduce中,JobTracker具有两种不同的职责:
- 管理集群中的计算资源,这涉及到维护活动节点列表、可用和占用的 map 和 reduce slots 列表,以及依据所选的调度策略将可用 slots 分配给合适的作业和任务
- 协调在集群上运行的所有任务,这涉及到指导 TaskTracker 启动 map 和 reduce 任务,监视任务的执行,重新启动失败的任务,推测性地运行缓慢的任务,计算作业计数器值的总和,等等
为单个进程安排大量职责会导致重大的可伸缩性问题,尤其是在较大的集群上,JobTracker 必须不断跟踪数千个 TaskTracker、数百个作业,以及数万个 map 和 reduce 任务。下图演示了这一问题。相反,TaskTracker 通常仅运行十来个任务,这些任务由勤勉的 JobTracker 分配给它们。
大型 Apache Hadoop 集群 (MRv1) 上繁忙的 JobTracker
为了解决可伸缩性问题,一个简单而又绝妙的想法应运而生:我们减少了单个 JobTracker 的职责,将部分职责委派给 TaskTracker,因为集群中有许多 TaskTracker。在新设计中,这个概念通过将 JobTracker 的双重职责(集群资源管理和任务协调)分开为两种不同类型的进程来反映。
不再拥有单个 JobTracker,一种新方法引入了一个集群管理器,它惟一的职责就是跟踪集群中的活动节点和可用资源,并将它们分配给任务。对于提交给集群的每个作业,会启动一个专用的、短暂的 JobTracker 来控制该作业中的任务的执行。有趣的是,短暂的 JobTracker 由在从属节点上运行的 TaskTracker 启动。因此,作业的生命周期的协调工作分散在集群中所有可用的机器上。得益于这种行为,更多工作可并行运行,可伸缩性得到了显著提高。
YARN的架构
- ResourceManager 代替集群管理器
- ApplicationMaster 代替一个专用且短暂的 JobTracker
- NodeManager 代替 TaskTracker
- 一个分布式应用程序代替一个 MapReduce 作业
YARN的架构
在 YARN 架构中,一个全局 ResourceManager 以主要后台进程的形式运行,它通常在专用机器上运行,在各种竞争的应用程序之间仲裁可用的集群资源。ResourceManager 会追踪集群中有多少可用的活动节点和资源,协调用户提交的哪些应用程序应该在何时获取这些资源。ResourceManager 是惟一拥有此信息的进程,所以它可通过某种共享的、安全的、多租户的方式制定分配(或者调度)决策(例如,依据应用程序优先级、队列容量、ACLs、数据位置等)。
在用户提交一个应用程序时,一个称为 ApplicationMaster 的轻量型进程实例会启动来协调应用程序内的所有任务的执行。这包括监视任务,重新启动失败的任务,推测性地运行缓慢的任务,以及计算应用程序计数器值的总和。这些职责以前分配给所有作业的单个 JobTracker。ApplicationMaster 和属于它的应用程序的任务,在受 NodeManager 控制的资源容器中运行。
NodeManager 是 TaskTracker 的一种更加普通和高效的版本。没有固定数量的 map 和 reduce slots,NodeManager 拥有许多动态创建的资源容器。容器的大小取决于它所包含的资源量,比如内存、CPU、磁盘和网络 IO。目前,仅支持内存和 CPU (YARN-3)。未来可使用 cgroups 来控制磁盘和网络 IO。一个节点上的容器数量,由配置参数与专用于从属后台进程和操作系统的资源以外的节点资源总量(比如总 CPU 数和总内存)共同决定。
有趣的是,ApplicationMaster 可在容器内运行任何类型的任务。例如,MapReduce ApplicationMaster 请求一个容器来启动 map 或 reduce 任务,而 Giraph ApplicationMaster 请求一个容器来运行 Giraph 任务。您还可以实现一个自定义的 ApplicationMaster 来运行特定的任务,进而发明出一种全新的分布式应用程序框架,改变大数据世界的格局。您可以查阅 Apache Twill,它旨在简化 YARN 之上的分布式应用程序的编写。
在 YARN 中,MapReduce 降级为一个分布式应用程序的一个角色(但仍是一个非常流行且有用的角色),现在称为 MRv2。MRv2 是经典 MapReduce 引擎(现在称为 MRv1)的重现,运行在 YARN 之上。
一个可运行任何分布式应用程序的集群
ResourceManager、NodeManager 和容器都不关心应用程序或任务的类型。所有特定于应用程序框架的代码都转移到它的 ApplicationMaster,以便任何分布式框架都可以受 YARN 支持 — 只要有人为它实现了相应的 ApplicationMaster。
得益于这个一般性的方法,Hadoop YARN 集群运行许多不同工作负载的梦想才得以实现。想像一下:您数据中心中的一个 Hadoop 集群可运行 MapReduce、Giraph、Storm、Spark、Tez/Impala、MPI 等。
单一集群方法明显提供了大量优势,其中包括:
- 更高的集群利用率,一个框架未使用的资源可由另一个框架使用
- 更低的操作成本,因为只有一个 “包办一切的” 集群需要管理和调节
- 更少的数据移动,无需在 Hadoop YARN 与在不同机器集群上运行的系统之间移动数据
管理单个集群还会得到一个更环保的数据处理解决方案。使用的数据中心空间更少,浪费的硅片更少,使用的电源更少,排放的碳更少,这只是因为我们在更小但更高效的 Hadoop 集群上运行同样的计算。
YARN 中的应用程序提交
YARN 中的应用程序提交
假设用户采用与 MRv1 中相同的方式键入 hadoop jar 命令,将应用程序提交到 ResourceManager。ResourceManager 维护在集群上运行的应用程序列表,以及每个活动的 NodeManager 上的可用资源列表。ResourceManager 需要确定哪个应用程序接下来应该获得一部分集群资源。该决策受到许多限制,比如队列容量、ACL 和公平性。ResourceManager 使用一个可插拔的 Scheduler。Scheduler 仅执行调度;它管理谁在何时获取集群资源(以容器的形式),但不会对应用程序内的任务执行任何监视,所以它不会尝试重新启动失败的任务。
在 ResourceManager 接受一个新应用程序提交时,Scheduler 制定的第一个决策是选择将用来运行 ApplicationMaster 的容器。在 ApplicationMaster 启动后,它将负责此应用程序的整个生命周期 首先也是最重要的是,它将资源请求发送到 ResourceManager,请求运行应用程序的任务所需的容器。资源请求是对一些容器的请求,用以满足一些资源需求,比如:
- 一定量的资源,目前使用 MB 内存和 CPU 份额来表示
- 一个首选的位置,由主机名、机架名称指定,或者使用 * 来表示没有偏好
- 此应用程序中的一个优先级,而不是跨多个应用程序
如果可能的话,ResourceManager 会分配一个满足 ApplicationMaster 在资源请求中所请求的需求的容器(表达为容器 ID 和主机名)。该容器允许应用程序使用特定主机上给定的资源量。分配一个容器后,ApplicationMaster 会要求 NodeManager(管理分配容器的主机)使用这些资源来启动一个特定于应用程序的任务。此任务可以是在任何框架中编写的任何进程(比如一个 MapReduce 任务或一个 Giraph 任务)。NodeManager 不会监视任务;它仅监视容器中的资源使用情况,举例而言,如果一个容器消耗的内存比最初分配的更多,它会结束该容器。
ApplicationMaster 会竭尽全力协调容器,启动所有需要的任务来完成它的应用程序。它还监视应用程序及其任务的进度,在新请求的容器中重新启动失败的任务,以及向提交应用程序的客户端报告进度。应用程序完成后,ApplicationMaster 会关闭自己并释放自己的容器。
尽管 ResourceManager 不会对应用程序内的任务执行任何监视,但它会检查 ApplicationMaster 的健康状况。如果 ApplicationMaster 失败,ResourceManager 可在一个新容器中重新启动它。您可以认为 ResourceManager 负责管理 ApplicationMaster,而 ApplicationMasters 负责管理任务。
YARN的其他特性
- 如果作业足够小,Uberization 支持在 ApplicationMaster 的 JVM 中运行一个 MapReduce 作业的所有任务。这样,您就可避免从 ResourceManager 请求容器以及要求 NodeManagers 启动(可能很小的)任务的开销。
- 与为 MRv1 编写的 MapReduce 作业的二进制或源代码兼容性 (MAPREDUCE-5108)。
- 针对 ResourceManager 的高可用性 (YARN-149)。此工作正在进行中,已由一些供应商完成。
- 重新启动 ResourceManager 后的应用程序恢复 (YARN-128)。ResourceManager 将正在运行的应用程序和已完成的任务的信息存储在 HDFS 中。如果 ResourceManager 重新启动,它会重新创建应用程序的状态,仅重新运行不完整的任务。此工作已接近完成,社区正在积极测试。它已由一些供应商完成。
- 简化的用户日志管理和访问。应用程序生成的日志不会留在各个从属节点上(像 MRv1 一样),而转移到一个中央存储区,比如 HDFS。在以后,它们可用于调试用途,或者用于历史分析来发现性能问题。
- Web 界面的新外观。
总结
YARN(Yet Another Resource Negotiator),也称Hadoop2.0,是新一代的通用资源管理系统。它在Hadoop 1.0(MRv1)的基础上,提供了更强大的可伸缩性和灵活性。对原有的架构进行了去中心化的处理,将资源管理和任务协调分为两个不同的进程来处理。此外,它特定的ApplicationMaster支持在容器(cpu、内存、磁盘和网络IO等资源)内运行任何类型的任务,给创造新的分布式应用程序框架提供了条件,从而除了MapReduce之外,它还可以运行Giraph、Storm、Spark、Tez/Impala、MPI 等,只需要使用特定的ApplicationMaster即可。
参考:YARN简介
YARN学习笔记——Overview and Architecture的更多相关文章
- OpenGL ES 学习笔记 - Overview - 小旋的博客
移动端图形标准中,目前 OpenGL ES 仍然是比较通用的标准(Vulkan 则是新一代),这里新开一个系列用于记录学习 OpenGL ES 的历程,以便查阅理解. OverView OpenGL ...
- YARN学习笔记(一)——YARN的简介
YARN的简介 什么是YARN MRv1的架构和缺陷 经典MapReduce的局限性 解决可伸缩性问题 YARN的架构 一个可运行任何分布式应用程序的集群 YARN中的应用程序提交 YARN的其他特性 ...
- YARN学习笔记
分布式资源调度框架 Yet Another Resource Negotiator YARN 不同框架使用相同的系统资源 YARN的核心组件(架构) ResourceManager RM 整个集群同一 ...
- YARN学习笔记 ResourceManager部分
CompositeService 多个service封装,service定义了状态机状态改变的合法情况. 重要的方法是(子类需要实现的):serviceStart,serviceInit,servic ...
- Spring Security Architecture and Implementation(架构和实现)学习笔记
Spring Security 关于spring-security的官网文档学习笔记,主要是第8章 Architecture and Implementation(架构和实现)内容 参考: https ...
- Node.js学习笔记(4):Yarn简明教程
Node.js学习笔记(4):Yarn简明教程. 引入Yarn NPM是常用的包管理工具,现在我们引入是新一代的包管理工具Yarn.其具有快速.安全.可靠的特点. 安装方式 使用npm工具安装yarn ...
- SpringBoot + Spring Security 学习笔记(二)安全认证流程源码详解
用户认证流程 UsernamePasswordAuthenticationFilter 我们直接来看UsernamePasswordAuthenticationFilter类, public clas ...
- PowerDesigner 15学习笔记:十大模型及五大分类
个人认为PowerDesigner 最大的特点和优势就是1)提供了一整套的解决方案,面向了不同的人员提供不同的模型工具,比如有针对企业架构师的模型,有针对需求分析师的模型,有针对系统分析师和软件架构师 ...
- Hadoop学习笔记—22.Hadoop2.x环境搭建与配置
自从2015年花了2个多月时间把Hadoop1.x的学习教程学习了一遍,对Hadoop这个神奇的小象有了一个初步的了解,还对每次学习的内容进行了总结,也形成了我的一个博文系列<Hadoop学习笔 ...
随机推荐
- linux命令(6/10):find 命令
Linux将时钟分为系统时钟(System Clock)和硬件(Real Time Clock,简称RTC)时钟两种.系统时间是指当前Linux Kernel中的时钟, 而硬件时钟则是主板上由电池供电 ...
- Sybase:获取本月最后一天的日期的实现方法
Sybase:获取本月最后一天的日期的实现方法 Oracle中查询月底那天的日期的函数为:last_day(). 在ASE中没有对应的函数,在Oracle移植到Sybase的时候,需要手动编写函数来实 ...
- PHP练习题二
1.抓取远程图片到本地,你会用什么函数? fsockopen, A 2.用最少的代码写一个求3值最大值的函数. function($a,$b,$c){* W0 z* u6 k+ e. L a: }5 ...
- [POI2009]Lyz
Description 初始时滑冰俱乐部有1到n号的溜冰鞋各k双.已知x号脚的人可以穿x到x+d的溜冰鞋. 有m次操作,每次包含两个数ri,xi代表来了xi个ri号脚的人.xi为负,则代表走了这么多人 ...
- 选择使用Spring框架的原因(Spring框架为企业级开发带来的好处有哪些)
- AngularJS的思考
AngularJS实践 什么是AngularJS AngularJS的核心理念是什么? 在我看来,Angualr的核心思想是:Template + Scope => HTML, Template ...
- jQ&js给label
<strong>当前角色:</strong><label id="lblRoleName" style="margin-bottom: 0p ...
- javascript日期格式处理
一. 服务端返回的日期和时间之间有T Asp.net MVC中 action返回前台的日期类型数据 是带有 T的,如: 2015-07-07T10:15:01. 这样的数据在Chrome浏览器,会自动 ...
- CocoaPods学习系列5——错误集锦
这篇文章记录使用CocoaPods过程中遇到的一些错误. 1.error:include of non-modular header inside framework module 在自定义类库中,引 ...
- [日常训练]AekdyCoin的跳棋
Description $AekdyCoin$正在玩一个游戏,该游戏要用到两副牌和一个数轴和一个棋子. 刚开始的时候棋子位于数轴的$0$位置.然后$AekdyCoin$交替的从两副牌中抽取一张牌,然后 ...