原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/4019131.html

在spark mllib 1.1版本中增加stat包,里面包含了一些统计相关的函数,本文主要分析其中的卡方检验的原理与实现:

一、基本原理

  在stat包中实现了皮尔逊卡方检验,它主要包含以下两类

    (1)适配度检验(Goodness of Fit test):验证一组观察值的次数分配是否异于理论上的分配。

    (2)独立性检验(independence test) :验证从两个变量抽出的配对观察值组是否互相独立(例如:每次都从A国和B国各抽一个人,看他们的反应是否与国籍无关)

  计算公式:

    其中O表示观测值,E表示期望值

  详细原理可以参考:http://zh.wikipedia.org/wiki/%E7%9A%AE%E7%88%BE%E6%A3%AE%E5%8D%A1%E6%96%B9%E6%AA%A2%E5%AE%9A

二、java api调用example

  https://github.com/tovin-xu/mllib_example/blob/master/src/main/java/com/mllib/example/stat/ChiSquaredSuite.java

三、源码分析

  1、外部api

    通过Statistics类提供了4个外部接口  

// Goodness of Fit test
def chiSqTest(observed: Vector, expected: Vector): ChiSqTestResult = {
ChiSqTest.chiSquared(observed, expected)
}
//Goodness of Fit test
def chiSqTest(observed: Vector): ChiSqTestResult = ChiSqTest.chiSquared(observed) //independence test
def chiSqTest(observed: Matrix): ChiSqTestResult = ChiSqTest.chiSquaredMatrix(observed)
//independence test
def chiSqTest(data: RDD[LabeledPoint]): Array[ChiSqTestResult] = {
ChiSqTest.chiSquaredFeatures(data)
}

  2、Goodness of Fit test实现

  这个比较简单,关键是根据(observed-expected)2/expected计算卡方值

 /*
* Pearon's goodness of fit test on the input observed and expected counts/relative frequencies.
* Uniform distribution is assumed when `expected` is not passed in.
*/
def chiSquared(observed: Vector,
expected: Vector = Vectors.dense(Array[Double]()),
methodName: String = PEARSON.name): ChiSqTestResult = { // Validate input arguments
val method = methodFromString(methodName)
if (expected.size != 0 && observed.size != expected.size) {
throw new IllegalArgumentException("observed and expected must be of the same size.")
}
val size = observed.size
if (size > 1000) {
logWarning("Chi-squared approximation may not be accurate due to low expected frequencies "
+ s" as a result of a large number of categories: $size.")
}
val obsArr = observed.toArray
  // 如果expected值没有设置,默认取1.0 / size
val expArr = if (expected.size == 0) Array.tabulate(size)(_ => 1.0 / size) else expected.toArray   / 如果expected、observed值都必须要大于1
if (!obsArr.forall(_ >= 0.0)) {
throw new IllegalArgumentException("Negative entries disallowed in the observed vector.")
}
if (expected.size != 0 && ! expArr.forall(_ >= 0.0)) {
throw new IllegalArgumentException("Negative entries disallowed in the expected vector.")
} // Determine the scaling factor for expected
val obsSum = obsArr.sum
val expSum = if (expected.size == 0.0) 1.0 else expArr.sum
val scale = if (math.abs(obsSum - expSum) < 1e-7) 1.0 else obsSum / expSum // compute chi-squared statistic
val statistic = obsArr.zip(expArr).foldLeft(0.0) { case (stat, (obs, exp)) =>
if (exp == 0.0) {
if (obs == 0.0) {
throw new IllegalArgumentException("Chi-squared statistic undefined for input vectors due"
+ " to 0.0 values in both observed and expected.")
} else {
return new ChiSqTestResult(0.0, size - 1, Double.PositiveInfinity, PEARSON.name,
NullHypothesis.goodnessOfFit.toString)
}
}
  // 计算(observed-expected)2/expected
if (scale == 1.0) {
stat + method.chiSqFunc(obs, exp)
} else {
stat + method.chiSqFunc(obs, exp * scale)
}
}
val df = size - 1
val pValue = chiSquareComplemented(df, statistic)
new ChiSqTestResult(pValue, df, statistic, PEARSON.name, NullHypothesis.goodnessOfFit.toString)
}

  3、independence test实现

    先通过下面的公式计算expected值,矩阵共有 r 行 c 列

     

    然后根据(observed-expected)2/expected计算卡方值

/*
* Pearon's independence test on the input contingency matrix.
* TODO: optimize for SparseMatrix when it becomes supported.
*/
def chiSquaredMatrix(counts: Matrix, methodName:String = PEARSON.name): ChiSqTestResult = {
val method = methodFromString(methodName)
val numRows = counts.numRows
val numCols = counts.numCols // get row and column sums
val colSums = new Array[Double](numCols)
val rowSums = new Array[Double](numRows)
val colMajorArr = counts.toArray
var i = 0
while (i < colMajorArr.size) {
val elem = colMajorArr(i)
if (elem < 0.0) {
throw new IllegalArgumentException("Contingency table cannot contain negative entries.")
}
colSums(i / numRows) += elem
rowSums(i % numRows) += elem
i += 1
}
val total = colSums.sum // second pass to collect statistic
var statistic = 0.0
var j = 0
while (j < colMajorArr.size) {
val col = j / numRows
val colSum = colSums(col)
if (colSum == 0.0) {
throw new IllegalArgumentException("Chi-squared statistic undefined for input matrix due to"
+ s"0 sum in column [$col].")
}
val row = j % numRows
val rowSum = rowSums(row)
if (rowSum == 0.0) {
throw new IllegalArgumentException("Chi-squared statistic undefined for input matrix due to"
+ s"0 sum in row [$row].")
}
val expected = colSum * rowSum / total
statistic += method.chiSqFunc(colMajorArr(j), expected)
j += 1
}
val df = (numCols - 1) * (numRows - 1)
val pValue = chiSquareComplemented(df, statistic)
new ChiSqTestResult(pValue, df, statistic, methodName, NullHypothesis.independence.toString)
}

原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/4019131.html

spark(1.1) mllib 源码分析(一)-卡方检验的更多相关文章

  1. spark(1.1) mllib 源码分析(二)-相关系数

    原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/4024733.html 在spark mllib 1.1版本中增加stat包,里面包含了一些统计相关的函数 ...

  2. spark(1.1) mllib 源码分析(三)-朴素贝叶斯

    原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/4042467.html 本文主要以mllib 1.1版本为基础,分析朴素贝叶斯的基本原理与源码 一.基本原 ...

  3. spark(1.1) mllib 源码分析(三)-决策树

    本文主要以mllib 1.1版本为基础,分析决策树的基本原理与源码 一.基本原理 二.源码分析 1.决策树构造 指定决策树训练数据集与策略(Strategy)通过train函数就能得到决策树模型Dec ...

  4. spark的存储系统--BlockManager源码分析

    spark的存储系统--BlockManager源码分析 根据之前的一系列分析,我们对spark作业从创建到调度分发,到执行,最后结果回传driver的过程有了一个大概的了解.但是在分析源码的过程中也 ...

  5. 【Spark篇】---Spark中资源和任务调度源码分析与资源配置参数应用

    一.前述 Spark中资源调度是一个非常核心的模块,尤其对于我们提交参数来说,需要具体到某些配置,所以提交配置的参数于源码一一对应,掌握此节对于Spark在任务执行过程中的资源分配会更上一层楼.由于源 ...

  6. Spark 1.6.1 源码分析

    由于gitbook网速不好,所以复制自https://zx150842.gitbooks.io/spark-1-6-1-source-code/content/,非原创,纯属搬运工,若作者要求,可删除 ...

  7. Spark Mllib源码分析

    1. Param Spark ML使用一个自定义的Map(ParmaMap类型),其实该类内部使用了mutable.Map容器来存储数据. 如下所示其定义: Class ParamMap privat ...

  8. 《深入理解Spark-核心思想与源码分析》(一)总体规划和第一章环境准备

    <深入理解Spark 核心思想与源码分析> 耿嘉安著 本书共计486页,计划每天读书20页,计划25天完成. 2018-12-20   1-20页 凡事豫则立,不豫则废:言前定,则不跲:事 ...

  9. Spark MLlib - Decision Tree源码分析

    http://spark.apache.org/docs/latest/mllib-decision-tree.html 以决策树作为开始,因为简单,而且也比较容易用到,当前的boosting或ran ...

随机推荐

  1. NSData 转 bytes 字节数据

    NSData 转 bytes 字节数据 NSData *data = [NSData dataWithContentsOfFile:filePath]; NSUInteger len = [data ...

  2. iOS Mapkit 定位REGcode地理位置偏移

    在iOS上,使用系统Mapkit定位,获取到的坐标会有偏移: 今有需求,用系统Mapkit定位,并Regcode出实际地理位置,修正偏移: 解决方案: 使用MapView的代理 - (void)map ...

  3. SQL-ORDER BY 多字段排序(升序、降序)

    ORDER BY _column1, _column2; /* _column1升序,_column2升序 */   ORDER BY _column1, _column2 DESC; /* _col ...

  4. gitlab和github区别

    1.概述: github  是一个基于git实现在线代码托管的仓库,向互联网开放,企业版要收钱.gitlab   类似 github,一般用于在企业内搭建git私服,要自己搭环境. 2.GitHub. ...

  5. spring中autowire的用法

    Autowire模式就是在spring的声明文件里用作进行对象间的关联关系自动绑定的,就是在spring beanfactory内的一个bean对其bean的引用可以自动进行,而不一定用ref=的方式 ...

  6. String、StringBuilder、StringBuffer对比

    参考:http://swiftlet.net/archives/1694 http://www.cnblogs.com/springcsc/archive/2009/12/03/1616326.htm ...

  7. mybatis学习知识

    目录 1,目录 2,介绍 3,快速入门 4,配置XML 5,xml文件映射 6,动态sql 7,java api 8,Statement Builders 9,日志 1,介绍 1.1 介绍 1.1.1 ...

  8. 点击button触发onclick事件判空后依旧自动跳转

    这是一个前端的问题. 其中判断字符串为空的脚本代码是这样的: var remark = $("#Remark").val(); //判空.注意:var reg = /空格/g; v ...

  9. C语言控制台打印3D爱心图案

    非常多程序猿都认为自己的编程工作十分的鼓噪乏味.一整天面对的都是一些写不完的代码和改不完的Bug.今天我们要给大家分享一些有趣的C语言代码,也许能够为你无聊的工作带来一丝乐趣. 这些代码能够完毕几个不 ...

  10. Archive将多个对象归档到同一个文件

    使用archiveRootObject:toFile:方法能够将一个对象直接写入到一个文件里.但有时候可能想将多个对象写入到同一个文件里,那么就要使用NSData来进行归档对象. NSData能够为一 ...