codevs 1332 上白泽慧音
1332 上白泽慧音
在幻想乡,上白泽慧音是以知识渊博闻名的老师。春雪异变导致人间之里的很多道路都被大雪堵塞,使有的学生不能顺利地到达慧音所在的村庄。因此慧音决定换一个能够聚集最多人数的村庄作为新的教学地点。人间之里由N个村庄(编号为1..N)和M条道路组成,道路分为两种一种为单向通行的,一种为双向通行的,分别用1和2来标记。如果存在由村庄A到达村庄B的通路,那么我们认为可以从村庄A到达村庄B,记为(A,B)。当(A,B)和(B,A)同时满足时,我们认为A,B是绝对连通的,记为<A,B>。绝对连通区域是指一个村庄的集合,在这个集合中任意两个村庄X,Y都满足<X,Y>。现在你的任务是,找出最大的绝对连通区域,并将这个绝对连通区域的村庄按编号依次输出。若存在两个最大的,输出字典序最小的,比如当存在1,3,4和2,5,6这两个最大连通区域时,输出的是1,3,4。
第1行:两个正整数N,M
第2..M+1行:每行三个正整数a,b,t, t = 1表示存在从村庄a到b的单向道路,t = 2表示村庄a,b之间存在双向通行的道路。保证每条道路只出现一次。
第1行: 1个整数,表示最大的绝对连通区域包含的村庄个数。
第2行:若干个整数,依次输出最大的绝对连通区域所包含的村庄编号。
5 5
1 2 1
1 3 2
2 4 2
5 1 2
3 5 1
3
1 3 5
对于60%的数据:N <= 200且M <= 10,000
对于100%的数据:N <= 5,000且M <= 50,000
tarjan
#include<cstdio>
#include<algorithm>
#define N 5001
#define M 50001
using namespace std;
int n,m,cnt;
int front[N],to[M*],nxt[M*],tot;
int dfn[N],low[N];
int ans[N],tmp[N];
int st[N],top;
bool v[N];
bool app[N];
void add(int u,int v)
{
to[++tot]=v; nxt[tot]=front[u]; front[u]=tot;
}
void tarjan(int u)
{
dfn[u]=low[u]=++cnt;
st[++top]=u;
v[u]=true;
for(int i=front[u];i;i=nxt[i])
{
if(!dfn[to[i]])
{
tarjan(to[i]);
low[u]=min(low[u],low[to[i]]);
}
else if(v[to[i]]) low[u]=min(low[u],dfn[to[i]]);
}
tmp[]=;
if(low[u]!=dfn[u]) return;
while(low[st[top]]!=dfn[st[top]])
{
tmp[++tmp[]]=st[top];
v[st[top]]=false;
top--;
}
tmp[++tmp[]]=st[top];
v[st[top]]=false;
top--;
if(tmp[]>ans[])
for(int i=;i<=tmp[];i++) ans[i]=tmp[i];
else if(tmp[]==ans[])
{
sort(tmp+,tmp+tmp[]+);
sort(ans+,ans+ans[]+);
for(int i=;i<=ans[];i++)
if(ans[i]<tmp[i]) break;
else if(tmp[i]<ans[i])
{
for(int j=;j<=ans[];j++) ans[i]=tmp[i];
break;
}
}
}
int main()
{
scanf("%d%d",&n,&m);
int u,v,w;
while(m--)
{
scanf("%d%d%d",&u,&v,&w);
app[u]=app[v]=true;
add(u,v);
if(w==) add(v,u);
}
for(int i=;i<=n;i++)
if(!dfn[i] && app[i])
tarjan(i);
sort(ans+,ans+ans[]+);
printf("%d\n",ans[]);
for(int i=;i<=ans[];i++) printf("%d ",ans[i]);
}
codevs 1332 上白泽慧音的更多相关文章
- CODEVS——T1332 上白泽慧音 || 洛谷——P1726 上白泽慧音
http://codevs.cn/problem/1332/|| https://www.luogu.org/problem/show?pid=1726#sub 时间限制: 1 s 空间限制: 1 ...
- 洛谷P1726 上白泽慧音
题目描述 在幻想乡,上白泽慧音是以知识渊博闻名的老师.春雪异变导致人间之里的很多道路都被大雪堵塞,使有的学生不能顺利地到达慧音所在的村庄.因此慧音决定换一个能够聚集最多人数的村庄作为新的教学地点.人间 ...
- P1726 上白泽慧音
题目描述 在幻想乡,上白泽慧音是以知识渊博闻名的老师.春雪异变导致人间之里的很多道路都被大雪堵塞,使有的学生不能顺利地到达慧音所在的村庄.因此慧音决定换一个能够聚集最多人数的村庄作为新的教学地点.人间 ...
- 洛谷P1726 上白泽慧音 [Tarjan]
题目传送门 上白泽慧音 题目描述 在幻想乡,上白泽慧音是以知识渊博闻名的老师.春雪异变导致人间之里的很多道路都被大雪堵塞,使有的学生不能顺利地到达慧音所在的村庄.因此慧音决定换一个能够聚集最多人数的村 ...
- 上白泽慧音(tarjan,图的染色)
题目描述 在幻想乡,上白泽慧音是以知识渊博闻名的老师.春雪异变导致人间之里的很多道路都被大雪堵塞,使有的学生不能顺利地到达慧音所在的村庄.因此慧音决定换一个能够聚集最多人数的村庄作为新的教学地点.人间 ...
- 【洛谷P1726】上白泽慧音
上白泽慧音 题目链接 强联通分量模板题,Tarjan求强联通分量,记录大小即可 #include<iostream> #include<cstring> #include< ...
- luoguP1726 上白泽慧音
P1726 上白泽慧音 题目描述 在幻想乡,上白泽慧音是以知识渊博闻名的老师.春雪异变导致人间之里的很多道路都被大雪堵塞,使有的学生不能顺利地到达慧音所在的村庄.因此慧音决定换一个能够聚集最多人数的村 ...
- Tarjan缩点【p1726】上白泽慧音
Description 在幻想乡,上白泽慧音是以知识渊博闻名的老师.春雪异变导致人间之里的很多道路都被大雪堵塞,使有的学生不能顺利地到达慧音所在的村庄.因此慧音决定换一个能够聚集最多人数的村庄作为新的 ...
- 上白泽慧音——tarjian
题目描述 在幻想乡,上白泽慧音是以知识渊博闻名的老师.春雪异变导致人间之里的很多道路都被大雪堵塞,使有的学生不能顺利地到达慧音所在的村庄.因此慧音决定换一个能够聚集最多人数的村庄作为新的教学地点.人间 ...
随机推荐
- LinQ to SQL 及 non-LinQ方式实现Group的Performance对比
拥有476550数据的一张数据表.使用其中的某个字段分组,然后按该字段进行排序.该需求分别使用LinQ to SQL和non-LinQ的方式实现,然后来看一下performance对比. LinQ w ...
- Twaver的mono-desiner导出的json文件解析
以画的交换机为例,其他大概都差不多. 利用Twaver做出交换机模型如图1所示,其中,每一个端口都是一个单独的对象.具体Twaver操作流程参见网址:http://twaver.servasoft.c ...
- Pipeline组Beta版本发布说明
项目名称 Pipeline 项目版本 Beta版本 负责人 北京航空航天大学计算机学院 IloveSE 小组 联系方式 http://www.cnblogs.com/IloveSE 要求发布日期 20 ...
- lintcode-42-最大子数组 II
42-最大子数组 II 给定一个整数数组,找出两个 不重叠 子数组使得它们的和最大. 每个子数组的数字在数组中的位置应该是连续的. 返回最大的和. 注意事项 子数组最少包含一个数 样例 给出数组 [1 ...
- 自定义类属性设置及setter、getter方法的内部实现
属性是可以说是面向对象语言中封装的一个体现,在自定义类中设置属性就相当于定义了一个私有变量.设置器(setter方法)以及访问器(getter方法),其中无论是变量的定义,方法的声明和实现都是系统自动 ...
- UVA 167 R-The Sultan's Successors
https://vjudge.net/contest/68264#problem/R The Sultan of Nubia has no children, so she has decided t ...
- mysql,oracle,sql server中的默认事务隔离级别查看,更改
未提交读(隔离事务的最低级别,只能保证不读取物理上损坏的数据) 已提交读(数据库引擎的默认级别) 可重复读 可序列化(隔离事务的最高级别,事务之间完全隔离) 可串行化比较严谨,级别高; MySQL m ...
- 【Python】python 调用c语言函数
虽然python是万能的,但是对于某些特殊功能,需要c语言才能完成.这样,就需要用python来调用c的代码了具体流程:c编写相关函数 ,编译成库然后在python中加载这些库,指定调用函数.这些函数 ...
- Git的安装与使用(一)
闲来无事写了个小demo,想上传到GitHub上,发现得使用git进行上传,所以得先了解下git . 1.git是什么 分布式版本控制器 2.svn与git的区别 svn:是集中式的版本控制系统,版本 ...
- 【题解】CQOI2012局部最小值
上课讲的一道题,感觉也挺厉害的~正解是容斥 + 状压dp.首先我们容易发现一共可能的局部最小值数量是十分有限的,最多也只有 \(8\) 个.所以我们可以考虑状压. 建立出状态 \(f[i][j]\) ...