图论&数学:矩阵树定理
运用矩阵树定理进行生成树计数
给定一个n个点m条边的无向图,问生成树有多少种可能
直接套用矩阵树定理计算即可
矩阵树定理的描述如下:
首先读入无向图的邻接矩阵,u-v G[u][v]++ G[v][u]++
度数矩阵: u-v D[u][u]++ D[v][v]++;
然后计算图G的基尔霍夫矩阵 C=D-G
接着去掉基尔霍夫矩阵的第i行和第i列(必须都是i,i取任意值)
计算剩下的子矩阵的行列式的值得绝对值即为生成树个数
然后对于有向图来说:
边 u->v G[u][v]++ 然后是D[v][v]++(有向图的度数矩阵指的是入度而不是出度)
这样根据上述步骤计算得来的是树形图的个数
在计算行列式的时候:
先用高斯消元消成上三角矩阵,再把对角线乘起来
(与乘法逆元相关的以后再展开)
下面介绍实现:
const int maxn=;
int A[maxn][maxn],B[maxn][maxn];
double a[maxn][maxn];
int T,n,m;
B是邻接矩阵,A是度数矩阵
a是基尔霍夫矩阵
我们在读入了n之后n--的目的是直接排除最后一行和最后一列将其变成余子式(是叫这个嘛??)
然后是计算行列式:
void gauss()
{
int now=;
for(int i=;i<=n;i++)
{
int j=now;
while(fabs(a[j][now])<eps&&j<=n) j++;
if(j==n+) {puts("");return;}
for(int k=;k<=n;k++) swap(a[now][k],a[j][k]);
for(int j=now+;j<=n;j++)
{
double t=a[j][now]/a[now][now];
for(int k=;k<=n;k++)
a[j][k]-=t*a[now][k];
}
now++;
}
double ans=;
if(n&) ans=-ans;
for(int i=;i<=n;i++) ans*=a[i][i];
printf("%.0lf\n",abs(ans));
}
这里的高斯消元是消成上三角矩阵,然后就方便计算det了
完整的实现如下:
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define eps 1e-8
using namespace std;
const int maxn=;
int A[maxn][maxn],B[maxn][maxn];
double a[maxn][maxn];
int T,n,m;
int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>'') {if(ch=='-')f=-; ch=getchar();}
while(ch>=''&&ch<='') {x=x*+ch-'';ch=getchar();}
return x*f;
}
void gauss()
{
int now=;
for(int i=;i<=n;i++)
{
int j=now;
while(fabs(a[j][now])<eps&&j<=n) j++;
if(j==n+) {puts("");return;}
for(int k=;k<=n;k++) swap(a[now][k],a[j][k]);
for(int j=now+;j<=n;j++)
{
double t=a[j][now]/a[now][now];
for(int k=;k<=n;k++)
a[j][k]-=t*a[now][k];
}
now++;
}
double ans=;
if(n&) ans=-ans;
for(int i=;i<=n;i++) ans*=a[i][i];
printf("%.0lf\n",abs(ans));
}
int main()
{
T=read();
while(T--)
{
memset(A,,sizeof(A));
memset(B,,sizeof(B));
n=read();m=read();
n--;
for(int i=;i<=m;i++)
{
int u=read(),v=read();
u--;v--;
A[u][u]++;A[v][v]++;
B[u][v]++;B[v][u]++;
}
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
a[i][j]=A[i][j]-B[i][j];
}
gauss();
}
return ;
}
图论&数学:矩阵树定理的更多相关文章
- [spoj104][Highways] (生成树计数+矩阵树定理+高斯消元)
In some countries building highways takes a lot of time... Maybe that's because there are many possi ...
- BZOJ 4766: 文艺计算姬 [矩阵树定理 快速乘]
传送门 题意: 给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图$K_{n,m}$ 求生成树个数 1 <= n,m,p <= 10^18 显然不能暴力上矩阵树定理 看 ...
- bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 559 Solved: 325[Submit][Sta ...
- 【LOJ#6072】苹果树(矩阵树定理,折半搜索,容斥)
[LOJ#6072]苹果树(矩阵树定理,折半搜索,容斥) 题面 LOJ 题解 emmmm,这题似乎猫讲过一次... 显然先\(meet-in-the-middle\)搜索一下对于每个有用的苹果数量,满 ...
- 2019.01.02 bzoj2467: [中山市选2010]生成树(矩阵树定理)
传送门 矩阵树定理模板题. 题意简述:自己看题面吧太简单懒得写了 直接构建出这4n4n4n个点然后按照题面连边之后跑矩阵树即可. 代码: #include<bits/stdc++.h> # ...
- [CF917D]Stranger Trees[矩阵树定理+解线性方程组]
题意 给你 \(n\) 个点的无向完全图,指定一棵树 \(S\),问有多少棵生成树和这棵树的公共边数量为 \(k\in[0,n-1]\) \(n\leq 100\) 分析 考虑矩阵树定理,把对应的树边 ...
- 【bzoj4596】[Shoi2016]黑暗前的幻想乡 容斥原理+矩阵树定理
题目描述 给出 $n$ 个点和 $n-1$ 种颜色,每种颜色有若干条边.求这张图多少棵每种颜色的边都出现过的生成树,答案对 $10^9+7$ 取模. 输入 第一行包含一个正整数 N(N<=17) ...
- 【BZOJ5133】[CodePlus2017年12月]白金元首与独舞 矩阵树定理
[BZOJ5133][CodePlus2017年12月]白金元首与独舞 题面:www.lydsy.com/JudgeOnline/upload/201712/div1.pdf 题解:由于k很小,考虑用 ...
- CSU 1805 Three Capitals(矩阵树定理+Best定理)
http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1805 题意: A和B之间有a条边,A和G之间有b条边,B和G之间有c条边.现在从A点出发走遍所 ...
随机推荐
- Python高级编程-itertoos模块
Python的内建模块itertools提供了非常有用的用于操作迭代对象的函数. 首先我们看看itertools模块提供的几个“无限”迭代器, import itertools naturals = ...
- UML设计(团队作业)
UML设计 一.团队信息 1.队名 读完文章再睡觉 2.团队成员的学号与姓名 学号 姓名 211606381 吴伟华(队长) 211606369 蔺皓雯 211606340 杨池宇 211606372 ...
- OpenGL ES 2.0 -- 制作 3D 彩色旋转三角形 - 顶点着色器 片元着色器 使用详解
最近开始关注OpenGL ES 2.0 这是真正意义上的理解的第一个3D程序 , 从零开始学习 . 案例下载地址 : http://download.csdn.net/detail/han120201 ...
- ASP.NET MVC中controller和view相互传值的方式
ASP.NET MVC中Controller向view传值的方式: ViewBag.ViewData.TempData 单个值的传递 Json 匿名类型 ExpandoObject Cookie Vi ...
- P4语法(1)基础数据类型和Header
文章学习自:P4语言编程详解 由于原文有一点的年份,所以也继续阅读了相关的最新规范. P4语言规范 基础数据类型 布尔型(bool) 运算符 描述 and 双目运算符,结果为布尔型 or 双目运算符, ...
- java中 i = i++和 j = i++ 的区别
由于i++和i--的使用会导致值的改变,所以在处理后置的++和--的时候,java的编译器会重新为变量分配一块新的内存空间,用来存放原来的值, 而完成赋值运算之后,这块内存会被释放. (1)对于j = ...
- phpcms开启在线编辑模版 方法
目录:\caches\configs\system.php 将:第20行 'tpl_edit'=> 0 修改为 'tpl_edit'=> 1 (0:默认的,不开启: 1: ...
- [转]Windows 7 蓝屏后获取 MEMORY.DMP 文件及注意事项
转自:http://hi.baidu.com/guicomeon/item/d6753a177fc76f0f8fbde46a 系统默认会在 C:\Windows 目录下创建 MEMORY.DMP 文件 ...
- 加密和数字签名工具GPG
转载: 源文件位置:http://blog.chinaunix.net/uid-9525959-id-2001824.html GPG [功能] GPG是加密和数字签名的免费工具,大多用于加密信息的 ...
- QT分析之网络编程
原文地址:http://blog.163.com/net_worm/blog/static/127702419201002842553382/ 首先对Windows下的网络编程总结一下: 如果是服务器 ...