放一手原题


题解:

第一次写(抄)斜率优化,心里还是有点小激动的。讲一下怎么实现的!

首先我们可以考虑一个朴素的dp:DP[i]表示前i个数字的最少花费,显然我们有一个转移方程

DP[i]=min{DP[j]+M+(sum[i]-sum[j])^2}

但是N^2肯定会超时,我们考虑优化他

假设有k<j<i,如果令j对i的贡献比k好

显然我们有这样的式子

DP[j]+M+(sum[i]-sum[j])^2 < DP[k]+M+(sum[i]-sum[j])^2

把平方打开之后移项

可以得到

 ((DP[j]+sum[j]^2)- (DP[k]+sum[k]^2) )  / 2*(sum[j]-sum[k]) < sum[i]

可以把这个式子看成(yj - yk)/(xj - xk) 这样就得到了一个类似斜率的式子!

有了这些结论有什么用呢?

令G[i,j]表示刚刚的斜率式,依然有k<j<i

当j的决策比k优秀的时候,则满足G[i,j]>G[j,k]

我们可以用单调队列维护解集,利用斜率判断元素的入队和出队,这样可以使时间复杂度降低到O(n)了

#include<cstdio>
#include<algorithm>
#include<cstring>
#define N 500005
using namespace std;
int dp[N],q[N],sum[N],l,r,n,m;
int GetDp(int i,int j)
{
return dp[j]+m+(sum[i]-sum[j])*(sum[i]-sum[j]);
}
int GetUp(int j,int k)
{
return dp[j]+sum[j]*sum[j]-(dp[k]+sum[k]*sum[k]);
}
int GetDown(int j,int k)
{
return *(sum[j]-sum[k]);
}
int main()
{
while (scanf("%d%d",&n,&m)!=EOF)
{
for (int i=,x;i<=n;i++)
scanf("%d",&x),sum[i]=sum[i-]+x;
l=r=;
q[r++]=;
for (int i=;i<=n;i++)
{
while (l+<r && GetUp(q[l+],q[l])<=sum[i]*GetDown(q[l+],q[l]))
l++;
dp[i]=GetDp(i,q[l]);
while (l+<r && GetUp(i,q[r-])*GetDown(q[r-],q[r-])<=GetUp(q[r-],q[r-])*GetDown(i,q[r-]))
r--;
q[r++]=i;
}
printf("%d\n",dp[n]);
}
return ;
}

斜率优化第一题! HDU3507 | 单调队列优化DP的更多相关文章

  1. 洛谷P3975 跳房子 [DP,单调队列优化,二分答案]

    题目传送门 跳房子 题目描述 跳房子,也叫跳飞机,是一种世界性的儿童游戏,也是中国民间传统的体育游戏之一. 跳房子的游戏规则如下: 在地面上确定一个起点,然后在起点右侧画 n 个格子,这些格子都在同一 ...

  2. BestCoder Round #89 02单调队列优化dp

    1.BestCoder Round #89 2.总结:4个题,只能做A.B,全都靠hack上分.. 01  HDU 5944   水 1.题意:一个字符串,求有多少组字符y,r,x的下标能组成等比数列 ...

  3. Codeforces 1304F1/F2 Animal Observation(单调队列优化 dp)

    easy 题目链接 & hard 题目链接 给出一张 \(n \times m\) 的矩阵,每个格子上面有一个数,你要在每行选出一个点 \((i,t)\),并覆盖左上角为 \((i,t)\), ...

  4. [小明打联盟][斜率/单调队列 优化dp][背包]

    链接:https://ac.nowcoder.com/acm/problem/14553来源:牛客网 题目描述 小明很喜欢打游戏,现在已知一个新英雄即将推出,他同样拥有四个技能,其中三个小技能的释放时 ...

  5. 【刷题笔记】DP优化-单调队列优化

    单调队列优化 眼界极窄的ZZ之前甚至不会单调队列--(好丢人啊) 单调队列优化的常见情景: 转移可以转化成只需要确定一个维度,而且这个维度的取值范围在某个区间里 修剪草坪 这个题学长讲的好像是另外一个 ...

  6. 动态规划专题(四)——单调队列优化DP

    前言 单调队列优化\(DP\)应该还算是比较简单容易理解的吧,像它的升级版斜率优化\(DP\)就显得复杂了许多. 基本式子 单调队列优化\(DP\)的一般式子其实也非常简单: \[f_i=max_{j ...

  7. tyvj1305 最大子序和 【单调队列优化dp】

    描述 输入一个长度为n的整数序列,从中找出一段不超过M的连续子序列,使得整个序列的和最大. 例如 1,-3,5,1,-2,3 当m=4时,S=5+1-2+3=7 当m=2或m=3时,S=5+1=6 输 ...

  8. P3957 跳房子(二分答案+单调队列优化DP)

    题目链接:https://www.luogu.org/contestnew/show/4468 题目大意:跳房子,也叫跳飞机,是一种世界性的儿童游戏,也是中国民间传统的体育游戏之一. 跳房子的游戏规则 ...

  9. 【Luogu】P2569股票交易(单调队列优化DP)

    题目链接 首先这题可以肯定的是朴素DP秒出.然后单调队列优化因为没接触过所以不会emmm 而且脑补没补出来 坐等四月省选倒数第一emmm 心态爆炸,偷懒放题解链接 #include<cstdio ...

随机推荐

  1. 初试Docker on Debian on VirtualBox

    一直以来都对Docker如雷贯耳,很想尝试一下但都被各种忙给耽误了,最近由于项目调试,需要安装 Oracle 和 SQL Server 数据库,但又不想安装到本机系统里,于是下决心啃一下docker这 ...

  2. Fiddler使用总结(一)

    Fiddler基础知识 .Fiddler是强大的抓包工具,它的原理是以web代理服务器的形式进行工作的,使用的代理地址是:127.0.0.1,端口默认为8888,我们也可以通过设置进行修改. .代理就 ...

  3. Java应用基础微专业-入门篇

    第1章--用程序来做计算 1.1 第一个Java程序 Mac version: Preference -> General -> Keys -> Search "Conte ...

  4. clientHeight、offsetHeight、scrollHeight、clientTop、scrollTop、offsetTop的对比

    首先,这些都是dom节点的属性. 高宽属性:clientHeight:html元素不含border的高度. 对于box-sizing不同的情况,有些地方需要注意一下.当box-sizing为conte ...

  5. [LeetCode] 53. Maximum Subarray 解题思路

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

  6. HDU 2487 Ugly Windows(暴力)(2008 Asia Regional Beijing)

    Description Sheryl works for a software company in the country of Brada. Her job is to develop a Win ...

  7. 再学习Webform页面生命周期

    参考文章: 在vs2010,新建一个aspx页面,页面头部有一行代码: <%@ Page Language="C#" AutoEventWireup="true&q ...

  8. Android 如何判断CPU是32位还是64位

    转自:http://blog.csdn.net/wangbaochu/article/details/47723265 1. 读取Android 的system property ("ro. ...

  9. win7系统日志分支删除方法

    这篇日志有问题,自己亲身尝试失败,这里只提供思路,谢谢(改天突破再做修改) 之前电脑装过德国的叫啥子软件来着,当时在系统自动创建了日志,后来软件卸载了,发现还是有这个日志主键,(我有强迫症)心里不爽, ...

  10. sublime Text3 设置用新标签页打开新的文件

    今天用sublime Text3 打开项目文件,发现单击文件就可以打开,但是有一个问题:每次打开新文件就会覆盖当前的标签页,无法在新的标签页打开.于是在网上查了一下. 网上有人说在Preference ...