Friendship POJ - 1815 基本建图
In modern society, each person has his own friends. Since all the people are very busy, they communicate with each other only by phone. You can assume that people A can keep in touch with people B, only if
1. A knows B’s phone number, or
2. A knows people C’s phone number and C can keep in touch with B.
It’s assured that if people A knows people B’s number, B will also know A’s number.
Sometimes, someone may meet something bad which makes him lose touch with all the others. For example, he may lose his phone number book and change his phone number at the same time.
In this problem, you will know the relations between every two among N people. To make it easy, we number these N people by 1,2,…,N. Given two special people with the number S and T, when some people meet bad things, S may lose touch with T. Your job is to compute the minimal number of people that can make this situation happen. It is supposed that bad thing will never happen on S or T.
Input
The first line of the input contains three integers N (2<=N<=200), S and T ( 1 <= S, T <= N , and S is not equal to T).Each of the following N lines contains N integers. If i knows j’s number, then the j-th number in the (i+1)-th line will be 1, otherwise the number will be 0.
You can assume that the number of 1s will not exceed 5000 in the input.
Output
If there is no way to make A lose touch with B, print “NO ANSWER!” in a single line. Otherwise, the first line contains a single number t, which is the minimal number you have got, and if t is not zero, the second line is needed, which contains t integers in ascending order that indicate the number of people who meet bad things. The integers are separated by a single space.
If there is more than one solution, we give every solution a score, and output the solution with the minimal score. We can compute the score of a solution in the following way: assume a solution is A1, A2, …, At (1 <= A1 < A2 <…< At <=N ), the score will be (A1-1)*N^t+(A2-1)*N^(t-1)+…+(At-1)*N. The input will assure that there won’t be two solutions with the minimal score.
题目大意:目标人物T和S只要能间接联络到对方就算可以联络,如果T通过A和S联系,如果A换号码了,就切断了与T和S的联系,T和S就无法联系了,现在让我们找出最小要几个人(T和S不能发生事故)发生事故可以使S和T切断联系。
简单来说就是切断网络流导致源点到汇点的流量为0就行,不过这题要切断的是点,所以需要把一个点拆成两个点,分别为x和x+n,x到x+n间连一条容量为1的边,然后所有入边连到x,出边从x+n发出,这样一来只要切断x到x+n间的那条边,这个点就不会有任何流量流过。初次求最大流的最大流量就是有几条通路可以使S和T保持联络,我们依次枚举所有点i拆成的i和i+n之间的边,将其容量修改为0,然后重新计算最大流(要清除边的flow),如果最大流减小了,则这个点切断会影响联络。
以上内容来自 https://blog.csdn.net/hsj970319/article/details/62416798
#include <cstdio>
#include <cstring>
#include <queue>
#include <cmath>
#include <algorithm>
#include <set>
#include <iostream>
#include <map>
#include <stack>
#include <string>
#include <vector>
#define pi acos(-1.0)
#define eps 1e-6
#define fi first
#define se second
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define bug printf("******")
#define mem(a,b) memset(a,b,sizeof(a))
#define fuck(x) cout<<"["<<x<<"]"<<endl
#define f(a) a*a
#define sf(n) scanf("%d", &n)
#define sff(a,b) scanf("%d %d", &a, &b)
#define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define pf printf
#define FRE(i,a,b) for(i = a; i <= b; i++)
#define FREE(i,a,b) for(i = a; i >= b; i--)
#define FRL(i,a,b) for(i = a; i < b; i++)
#define FRLL(i,a,b) for(i = a; i > b; i--)
#define FIN freopen("in.txt","r",stdin)
#define lowbit(x) x&-x
#pragma comment (linker,"/STACK:102400000,102400000")
using namespace std;
const int maxn = ;
typedef long long LL;
const int MX = ;
const int MXE = * MX * MX;
const LL INFLL = 0x3f3f3f3f3f3f3f3fLL;
const int INF = 0x3f3f3f;
int tot, num, s, t;
int head[MX];
struct Edge {
int v, nxt;
LL w;
} edge[]; void init() {
memset (head, -, sizeof (head) );
tot = ;
} void add (int u, int v, LL w) {
edge[tot].v = v;
edge[tot].w = w;
edge[tot].nxt = head[u];
head[u] = tot++;
edge[tot].v = u;
edge[tot].w = ;
edge[tot].nxt = head[v];
head[v] = tot++;
} int d[MX], vis[MX], gap[MX];
void bfs() {
memset (d, , sizeof (d) );
memset (gap, , sizeof (gap) );
memset (vis, , sizeof (vis) );
queue<int>q;
q.push (t);
vis[t] = ;
while (!q.empty() ) {
int u = q.front();
q.pop();
for (int i = head[u]; ~i; i = edge[i].nxt) {
int v = edge[i].v;
if (!vis[v]) {
d[v] = d[u] + ;
gap[d[v]]++;
q.push (v);
vis[v] = ;
}
}
}
} int last[MX];
LL dfs (int u, LL f) {
if (u == t) return f;
LL sap = ;
for (int i = last[u]; ~i; i = edge[i].nxt) {
int v = edge[i].v;
if (edge[i].w > && d[u] == d[v] + ) {
last[u] = i;
LL tmp = dfs (v, min (f - sap, edge[i].w) );
edge[i].w -= tmp;
edge[i ^ ].w += tmp;
sap += tmp;
if (sap == f) return sap;
}
}
if (d[s] >= num) return sap;
if (! (--gap[d[u]]) ) d[s] = num;
++gap[++d[u]];
last[u] = head[u];
return sap;
} LL solve (int st, int ed, int n) {
LL flow = ;
num = n;
s = st;
t = ed;
bfs();
memcpy (last, head, sizeof (head) );
while (d[s] < num) flow += dfs (s, INFLL);
return flow;
}
int n, sp, tp, x, cnt[], mp[][];
void build() {
init();
for (int i = ; i <= n ; i++) {
if (!cnt[i]) add(i, i + n, );
for (int j = ; j <= n ; j++) {
if (mp[i][j] && i != j ) add(i + n, j, INF);
}
}
}
int main() {
while(~scanf("%d%d%d", &n, &sp, &tp)) {
int flag = ;
memset(cnt, , sizeof(cnt));
for (int i = ; i <= n ; i++) add(i, i + n, );
for (int i = ; i <= n ; i++) {
for (int j = ; j <= n ; j++) {
scanf("%d", &mp[i][j]);
if (mp[i][j] && ((i == sp && j == tp) || (i == tp && j == sp)))flag = ;
}
}
if (flag) {
printf("NO ANSWER!\n");
continue;
}
build();
int temp = (int)(solve(sp + n, tp, * n));
printf("%d\n", temp);
vector<int>path;
path.clear();
for (int i = ; i <= n ; i++) {
if (i == sp || i == tp ) continue;
cnt[i] = ;
build();
if (temp > (int)(solve(sp + n, tp, * n))) temp--, path.push_back(i);
else cnt[i] = ;
if (temp <= ) break;
}
for (int i = ; i < path.size() ; i++)
printf("%d%c", path[i], i == path.size() - ? '\n' : ' ');
}
return ;
}
Friendship POJ - 1815 基本建图的更多相关文章
- poj 3648 2-SAT建图+topsort输出结果
其实2-SAT类型题目的类型比较明确,基本模型差不多是对于n组对称的点,通过给出的限制条件建图连边,然后通过缩点和判断冲突来解决问题.要注意的是在topsort输出结果的时候,缩点后建图需要反向连边, ...
- poj 3683 2-sat建图+拓扑排序输出结果
发现建图的方法各有不同,前面一题连边和这一题连边建图的点就不同,感觉这题的建图方案更好. 题意:给出每个婚礼的2个主持时间,每个婚礼的可能能会冲突,输出方案. 思路:n个婚礼,2*n个点,每组点是对称 ...
- POJ 1149 PIGS 建图,最大流
题意: 你m个猪圈以及每个猪圈里原来有多少头猪,先后给你n个人,每个人能打开某一些猪圈并且他们最多想买Ki头猪,在每一个人买完后能将打开的猪圈中的猪顺意分配在这次打开猪圈里,在下一个人来之前 已打开的 ...
- poj 3281 最大流+建图
很巧妙的思想 转自:http://www.cnblogs.com/kuangbin/archive/2012/08/21/2649850.html 本题能够想到用最大流做,那真的是太绝了.建模的方法很 ...
- POJ 3687 Labeling Balls 逆向建图,拓扑排序
题目链接: http://poj.org/problem?id=3687 要逆向建图,输入的时候要判重边,找入度为0的点的时候要从大到小循环,尽量让编号大的先入栈,输出的时候注意按编号的顺序输出重量, ...
- poj 1149 Pigs 网络流-最大流 建图的题目(明天更新)-已更新
题目大意:是有M个猪圈,N个顾客,顾客要买猪,神奇的是顾客有一些猪圈的钥匙而主人MIRKO却没有钥匙,多么神奇?顾客可以在打开的猪圈购买任意数量的猪,只要猪圈里有足够数量的猪.而且当顾客打开猪圈后mi ...
- poj 3281 Dining 网络流-最大流-建图的题
题意很简单:JOHN是一个农场主养了一些奶牛,神奇的是这些个奶牛有不同的品味,只喜欢吃某些食物,喝某些饮料,傻傻的John做了很多食物和饮料,但她不知道可以最多喂饱多少牛,(喂饱当然是有吃有喝才会饱) ...
- (匹配 二维建图) Antenna Placement --POJ --3020
链接: http://poj.org/problem?id=3020 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=82834#probl ...
- POJ 1384 Intervals (区间差分约束,根据不等式建图,然后跑spfa)
传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1384 Intervals Time Limit: 10000/5000 MS (Java/Others ...
随机推荐
- 校招小白机考入坑之从键盘输入java的各种数据类型
//1.从键盘输入一个整型(其他基本类型类似) Scanner sc =new Scanner(System.in); sc.hasNextInt(); int str1 = sc.nextInt() ...
- hibernate提示Unknown entity: :xxx
错误提示: org.hibernate.MappingException: Unknown entity: org.dao.po.Role at org.hibernate.internal.Sess ...
- 对int类型最小值INT_MIN取负值结果不变
在32位系统中,int类型的最大值是0x7fffffff(即除了最高的1Bit其他31位都为1),而最小值是0x80000000(除了最高1bit,其他31位都为0). 显然,对于最小值求负数是不存在 ...
- Sql server在cmd下的使用
方法一 在DOS提示符下,c:\>isql -U sa -P (此处输入SA密码) 注----大小写敏感 回车后会出现"1>"提示符,表明已成功,此时可在DOS下做任何 ...
- lsscsi命令详解
基础命令学习目录首页 lsscsi包默认是不安装的.lsscsi包安装完之后,lsscsi命令就可以使用了.lsscsi命令(lsscsi -t -L)能很方便的看出哪些是固态硬盘(SSD),哪些是S ...
- [leetcode-662-Maximum Width of Binary Tree]
Given a binary tree, write a function to get the maximum width of the given tree. The width of a tre ...
- Java学习个人备忘录之关键字final
final关键字final可以修饰类,方法,变量.final修饰的类不可以被继承final修饰的方法不可以被覆盖final修饰的变量是一个常量.只能被赋值一次.内部类只能访问被final修饰的局部变量 ...
- jQuery对象和DOM对象使用说明
1.jQuery对象和DOM对象第一次学习jQuery,经常分辨不清哪些是jQuery对象,哪些是 DOM对象,因此需要重点了解jQuery对象和DOM对象以及它们之间的关系.DOM对象,即是我们用传 ...
- ACM 第十天
动态规划2 1.树形DP 2.概率DP 3.区间DP 模板 ; len < n; len++) { //操作区间的长度 , j = len; j <= n; i++, j++) { //始 ...
- Kprobe
linux内核源码Documentation目录下存在kprobe介绍文档如下 Kprobes allows multiple probes at the same address. Current ...