(本文语言不通,细节省略较多,不适合初学者学习)

解决一类简单的sat问题。

每个变量有0/1两种取值,m个限制条件都可以转化成形如:若x为0/1则y为0/1等等(x可以等于y)

具体:

每个变量拆成i,i+n两个点,表示取0和取1

对于x为0,y为1的情况,从x向y+n连接一条边,

发现有逆命题:若y为0,则x一定为1,从y向x+n连接一条边。

可以发现,这形成了一个有向图。

可以tarjan

无解的条件是:一个变量的i,i+n在同一个scc里。这样这个变量不论取哪个值,都必须取另外一个值。

至于怎么输出方案?

方法一:

tarjan启发缩点。同一个scc一个值确定,其他的值就都确定了。

现在是DAG,就要拓扑咯。

如果正常拓扑的话,入度为0的点,出度影响的是一大片。随便赋值很可能就错了。

0出度点比较温顺,不会影响别人的取值。

就建一个反向DAG。然后拓扑

自底向上,不断选择零出度点。

具体流程:

c[i]表示i属于的scc

2-SAT点的对称的,边的连法也是对称的,所以其实一个scc也是对称的。设opp[c[i]]=c[i+n],opp[c[i+n]]=c[i]

由于对称,对于一个scc中的任何点i,opp[c[i]]都是c[i+n]。

val[2*n]表示scc的赋值。

初始-1

1.队列开始的scc,编号k

如果val[k]=-1,则val[k]=0,val[opp[k]]=1 (前提条件:i是0,i+n是1)

val[k]=0表示选择这个scc的赋值可以取到自己。

否则跳过。

2.topo结束后,for(i=1,i<=n,i++)

如果val[c[i]]=0,表示,c[i]可以取到。那么i的值就是0

如果val[c[i]]=1,表示,我们先topo到了val[c[i+n]],val[c[i+n]]=0,可以取。0就不可取了。

合并一下,恰好,i的实际值就是val[c[i]]

正确性:

一个链其实是一个块,证明时可以分别考虑。
因为图是对称的,根据bfs性质,如果先推到i,一定i+n会在i后面才推到。所以,其实整个链是连续的scc都取自己,即val[k]=0的。不存在i的一个后继没有选上,却选上了的情况

所以,

1.如果不存在一个i,满足i,i+n都在链上,一个链上的scc其实是同时取或者同时不取,一定满足条件。

2.如果存在一个i,i+n都在链上。先访问到的会选择上。假设i指向i+n,由于反向建图,会先访问i+n,变量i会赋值为1,代表0的i点没有选择自己,条件的假设本身就不满足了。这显然合法。

复杂度:线性。

方法二:
方法一好麻烦啊。还要缩点还要topo

发现一个性质:

tarjan本质是DFS

最先赋值的是底层的scc

本来就要自底向上topo,所以,干脆就把scc和opp[scc]的大小作为val好了。

即,c[i]>opp[c[i]]的话,那么意味着,tarjan的时候,先dfs出opp[c[i]],对应topo中先把opp[c[i]]入队。

(由于刚才说了,topo实际上把一条链上的scc都选择自己,或者都不选择自己,和dfs先搜完一个子树再回溯如出一辙。整个子树scc缩点之后就是一条链,这条链的scc值都比对称的链scc小。即先赋值。)

所以,i就赋值为对面的1

反之就是0

发现,恰好,i的赋值就是c[i]>c[i+n]

仔细想想,其实我已经证明了方法二和方法一本质是一致的。

两者正确性的证明都是上面写的那个。

(upda2019.4.3:

这个证明和上面的不一样

发现两条链不是简单对称,而是“DNA双螺旋结构!”

也就是,反向对称的

而且发现,对于一条链,后继一定比前驱的编号小

不妨从1~n那排点考虑,所以,如果一个点被选择了,意味着c[i]<c[i+n]

由于反向对称,而i的后继对应的是i+n的前驱,所以编号一定也更小,一定也会被选择上。

所以正确。

方法二显然简单。

甚至不用缩点,tarjan完了,直接输出。

模板:

【模板】2-SAT 问题

#include<bits/stdc++.h>
#define numb (ch^'0')
using namespace std;
typedef long long ll;
const int N=1e6+;
void rd(int &x){
x=;char ch;
while(!isdigit(ch=getchar()));
for(x=numb;isdigit(ch=getchar());x=(x<<)+(x<<)+numb);
}
int n,m;
struct node{
int nxt,to;
}e[*N];
int hd[*N],cnt;
void add(int x,int y){
e[++cnt].nxt=hd[x];
e[cnt].to=y;
hd[x]=cnt;
}
int sta[*N],top;
bool in[*N];
int c[*N],scc;
int dfn[*N],low[*N];
int df;
void tarjan(int x){
//cout<<" x "<<x<<endl;
dfn[x]=low[x]=++df;
in[x]=;
sta[++top]=x;
for(int i=hd[x];i;i=e[i].nxt){
int y=e[i].to;
//cout<<y<<endl;
if(!dfn[y]){
tarjan(y);low[x]=min(low[x],low[y]);
}
else if(in[y]) low[x]=min(low[x],dfn[y]);
}
if(dfn[x]==low[x]){
scc++;int z;
do{
z=sta[top--];in[z]=;c[z]=scc;
}while(z!=x);
}
}
int main(){
rd(n);rd(m);
int x,y,p,q;
for(int i=;i<=m;i++){
rd(x),rd(p),rd(y),rd(q);
add(x+(-p)*n,y+q*n);
add(y+(-q)*n,x+p*n);
}
for(int i=;i<=*n;i++){
if(!dfn[i]) tarjan(i);
top=;
}
for(int i=;i<=n;i++){
if(c[i]==c[i+n]){
printf("IMPOSSIBLE");return ;
}
}
printf("POSSIBLE\n");
for(int i=;i<=n;i++){
printf("%d ",c[i]>c[i+n]);
}
return ;
}

[学习笔记]2-SAT 问题的更多相关文章

  1. <老友记>学习笔记

    这是六个人的故事,从不服输而又有强烈控制欲的monica,未经世事的千金大小姐rachel,正直又专情的ross,幽默风趣的chandle,古怪迷人的phoebe,花心天真的joey——六个好友之间的 ...

  2. OGG学习笔记02-单向复制配置实例

    OGG学习笔记02-单向复制配置实例 实验环境: 源端:192.168.1.30,Oracle 10.2.0.5 单实例 目标端:192.168.1.31,Oracle 10.2.0.5 单实例 1. ...

  3. python数据分析入门学习笔记

    学习利用python进行数据分析的笔记&下星期二内部交流会要讲的内容,一并分享给大家.博主粗心大意,有什么不对的地方欢迎指正~还有许多尚待完善的地方,待我一边学习一边完善~ 前言:各种和数据分 ...

  4. 【MarkMark学习笔记学习笔记】javascript/js 学习笔记

    1.0, 概述.JavaScript是ECMAScript的实现之一 2.0,在HTML中使用JavaScript. 2.1 3.0,基本概念 3.1,ECMAScript中的一切(变量,函数名,操作 ...

  5. Linux 学习笔记之超详细基础linux命令 Part 13

    Linux学习笔记之超详细基础linux命令 by:授客 QQ:1033553122 ---------------------------------接Part 12---------------- ...

  6. Linux 学习笔记之超详细基础linux命令 Part 8

    Linux学习笔记之超详细基础linux命令 by:授客 QQ:1033553122 ---------------------------------接Part 7----------------- ...

  7. Deep learning with Python 学习笔记(5)

    本节讲深度学习用于文本和序列 用于处理序列的两种基本的深度学习算法分别是循环神经网络(recurrent neural network)和一维卷积神经网络(1D convnet) 与其他所有神经网络一 ...

  8. 【Redis】命令学习笔记——字符串(String)(23个超全字典版)

    Redis支持五种数据类型:string(字符串),hash(哈希),list(列表),set(集合)及zset(sorted set:有序集合). 本篇基于redis 4.0.11版本,学习字符串( ...

  9. programming-languages学习笔记--第3部分

    programming-languages学习笔记–第3部分 */--> pre.src {background-color: #292b2e; color: #b2b2b2;} pre.src ...

  10. 学习笔记 - 2sat

    学习笔记 - 2sat 决定重新启用Markdown--只是因为它支持MathJax数学公式 noip考完,既轻松又无奈,回来慢慢填坑 这篇博客也是拖了好久,通过kuangbin的博客才弄懂2-sat ...

随机推荐

  1. OpenSUSE 11 安装Qt5.0,失败,失败,失败,留个坑,以后来填,万一实现了呢

    我又来无耻的写问题来了,这次还真的是没有解决,线留坑吧,万一以后实现了. 同样,这次也是以恶搞网友说听说想在open suse 上面安装5.0版本以后的Qt,自己折腾好几没有成功. 我一想,哎,这不是 ...

  2. Unity自带标准资源包中的特效

  3. Java开发工程师(Web方向) - 01.Java Web开发入门 - 第5章.Git

    第5章--Git 版本控制简介 VCS (version control system) 版本控制系统:记录若干文件的修订记录的系统,帮助查阅/回到某个历史版本 LVCS本地 CVCS集中式(Cent ...

  4. lintcode671 循环单词

    循环单词   The words are same rotate words if rotate the word to the right by loop, and get another. Cou ...

  5. Java学习 · 初识 面向对象基础一

    面向对象基础 1.1面向过程与面向对象的区别 面向过程和面向对象二者都是思考问题的方式,再简单的事物时,可以线性思考时使用面向过程,但当事物较为复杂时,只能使用面向对象设计.但二者并不是对立的,在解决 ...

  6. 主题模型 LDA 入门

    主题模型 LDA 入门(附 Python 代码)   一.主题模型 在文本挖掘领域,大量的数据都是非结构化的,很难从信息中直接获取相关和期望的信息,一种文本挖掘的方法:主题模型(Topic Model ...

  7. Deep Residual Learning for Image Recognition论文笔记

    Abstract We present a residual learning framework to ease the training of networks that are substant ...

  8. js学习之正则表达式

    js学习之正则表达式 正则表达式(英语:Regular Expression,在代码中常简写为regex.regexp或RE)使用单个字符串来描述.匹配一系列符合某个句法规则的字符串搜索模式 一:语法 ...

  9. Pipeline组Beta版本发布说明

    项目名称 Pipeline 项目版本 Beta版本 负责人 北京航空航天大学计算机学院 IloveSE 小组 联系方式 http://www.cnblogs.com/IloveSE 要求发布日期 20 ...

  10. Ubuntu16.04修改IP

    首先用root用户登陆,然后输入你root的密码.如下图:   然后编辑interfaces文件,该文件位于/etc/network/下,执行如下命令: vim /etc/network/interf ...