description

BZOJ权限题.

solution

一道非常好的二分+贪心题目。

第一问就是\(\frac{\sum_u(deg[u]-1)}{2}+1\)。

第二问需要在方案最优的情况下最长链最短,考虑二分。

那么自底向上地考虑每个子树中的节点,

我们发现每个节点要产生最优方案,一定是考虑选择自己伸向父亲的链和合并儿子伸向自己的链。

于是我们把所有儿子伸向自己的链长排序,

那么我们需要在合并的链长不超过二分答案的情况下使得伸向父亲的链长最小。

由于伸向父亲链长越小合并答案越不容易满足,因此考虑二分这个伸向父亲的链长。

总复杂度为\(O(nlog^2n)\)

Code

#include<bits/stdc++.h>
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<iomanip>
#include<cstring>
#include<complex>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<ctime>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<set>
#define Cpy(x,y) memcpy(x,y,sizeof(x))
#define Set(x,y) memset(x,y,sizeof(x))
#define FILE "a"
#define mp make_pair
#define pb push_back
#define RG register
#define il inline
using namespace std;
typedef unsigned long long ull;
typedef vector<int>VI;
typedef long long ll;
typedef double dd;
const dd eps=1e-7;
const int N=300010;
const int M=1000010;
const int inf=2147483647;
const ll INF=1e18+1;
const ll P=100000;
il ll read(){
RG ll data=0,w=1;RG char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch<='9'&&ch>='0')data=data*10+ch-48,ch=getchar();
return data*w;
} il void file(){
srand(time(NULL)+rand());
freopen(FILE".in","r",stdin);
freopen(FILE".out","w",stdout);
} int n;
int head[N],nxt[N<<1],to[N<<1],cnt,d[N];
int c,flg; int f[N];VI L[N];
il int pick(int k,int fb){
RG int len=L[k].size(),mx=0;
if(!((len&1)^(fb==-1))){if(fb==len-1)len--;mx=L[k][len-1];len--;}
for(RG int i=0,j=len-1;i<=j;i++,j--){
if(i==fb)i++;if(j==fb)j--;if(i>j)break;
mx=max(mx,L[k][i]+L[k][j]);
}
return mx;
}
void dfs(int u,int ff){
f[u]=0;L[u].clear();
for(RG int i=head[u];i;i=nxt[i]){
RG int v=to[i];if(v==ff)continue;
dfs(v,u);if(!flg)return;
L[u].push_back(f[v]+1);
} sort(L[u].begin(),L[u].end()); if(!ff){if(pick(u,-1)>c){flg=0;return;}return;}
else if((d[u]&1)&&pick(u,-1)<=c)return;
RG int l=0,r=L[u].size()-1,mid;
while(l<=r){
mid=(l+r)>>1;
if(pick(u,mid)<=c)f[u]=L[u][mid],r=mid-1;
else l=mid+1;
}
if(!f[u]){flg=0;return;}
} il bool check(int w){c=w;flg=1;dfs(1,0);return flg;} int main()
{
n=read();
for(RG int i=1,u,v;i<n;i++){
u=read();v=read();d[u]++;d[v]++;
to[++cnt]=v;nxt[cnt]=head[u];head[u]=cnt;
to[++cnt]=u;nxt[cnt]=head[v];head[v]=cnt;
}
RG int l=1,r=n-1,mid,ans=n,ret=0;
for(RG int i=1;i<=n;i++)ret+=(d[i]-1)/2;ret++;
while(l<=r){
mid=((l+r)>>1);
if(check(mid))ans=mid,r=mid-1;
else l=mid+1;
}
printf("%d %d\n",ret,ans);
return 0;
}

[BZOJ2067]szn的更多相关文章

  1. $bzoj2067\ szn$ 二分+贪心

    正解:二分+贪心 解题报告: 传送门$QwQ$ 题目大意就说有一棵树,然后要用若干条线覆盖所有边且不能重叠.问最少要用几条线,在用线最少的前提下最长的线最短是多长. 昂首先最少用多少条线这个还是蛮$e ...

  2. 【BZOJ2067】SZN(二分,动态规划,贪心)

    [BZOJ2067]SZN(二分,动态规划,贪心) 题面 权限题额 Description String-Toys joint-stock 公司需要你帮他们解决一个问题. 他们想制造一个没有环的连通图 ...

  3. 【BZOJ2067】[Poi2004]SZN 二分+树上贪心

    [BZOJ2067][Poi2004]SZN Description String-Toys joint-stock 公司需要你帮他们解决一个问题. 他们想制造一个没有环的连通图模型. 每个图都是由一 ...

  4. bzoj2067: [Poi2004]SZN

    Description String-Toys joint-stock 公司需要你帮他们解决一个问题. 他们想制造一个没有环的连通图模型. 每个图都是由一些顶点和特定数量的边构成. 每个顶点都可以连向 ...

  5. 【BZOJ2067】[Poi2004]SZN

    题解: 比上一题水多了 首先树上贪心,肯定要考虑儿子 然后我们会发现这个东西就是要先把儿子连起来 然后如果儿子个数为奇数我们可以把这一条和它连向父亲的并在一起 由于根没有父亲所以要单独考虑 答案就是s ...

  6. 2067: [Poi2004]SZN——树上贪心+二分

    题目大意: 给一棵树.求用最少的链覆盖这棵树(链不能相交),在这个基础上求最长的链最短可以是多少. n<=10000 题解: 肯定先处理第一问: 答案:$\sum_(du[i]-1)/2+1$ ...

  7. [POI2004] SZN

    Description 给定\(N(N\leq 10000)\)个点的树,要求用最少的路径覆盖树边.路径之间可以有交点,不能有交边.问最少需要几条路径以及在第一问的基础上最长的路径最短是多少? Sol ...

  8. bzoj 2067 [Poi2004]SZN——二分+贪心

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2067 最少的线段可以贪心地想出来.(结果还是写错了)就是偶数孩子可以自己配对,奇数孩子要带一 ...

  9. bzoj 2067: [Poi2004]SZN【贪心+二分+树形dp】

    第一问就是Σ(deg[u]-1)/2+1 第二问是二分,判断的时候考虑第一问的贪心规则,对于奇度数的点,两两配对之后一条延伸到上面:对于欧度数的点,两两配对或者deg[u]-2的点配对,然后一条断在这 ...

随机推荐

  1. dubbo之监控中心(monitor)

    一.monitor是dubbo框架中的一个监控中心.这个只是针对于消费者和提供者进行一个数据记录,不参与业务和使用.当然当monitor挂掉之后,也不会影响服务的正常运行. 二.在阿里的dubbo中也 ...

  2. git学习笔记(一)——从已存在的远程仓库克隆

    应用场景:在公司电脑把脚本上传到公司的gitlab上,在家里想继续写: 问题: 家里的之前代码连的是github的仓库,需要把公钥替换成公司gitlab的. 环境:win10,pycharm,git ...

  3. leetcode-电话号码的字母组合

    电话号码的字母组合 给定一个仅包含数字 2-9 的字符串,返回所有它能表示的字母组合. 给出数字到字母的映射如下(与电话按键相同).注意 1 不对应任何字母. 示例: 输入:"23" ...

  4. leetcode-峰值检测

    寻找峰值     峰值元素是指其值大于左右相邻值的元素. 给定一个输入数组 nums,其中 nums[i] ≠ nums[i+1],找到峰值元素并返回其索引. 数组可能包含多个峰值,在这种情况下,返回 ...

  5. 365. Count 1 in Binary【LintCode java】

    Description Count how many 1 in binary representation of a 32-bit integer. Example Given 32, return  ...

  6. 提升方法-AdaBoost

    提升方法通过改变训练样本的权重,学习多个分类器(弱分类器/基分类器)并将这些分类器进行线性组合,提高分类的性能. AdaBoost算法的特点是不改变所给的训练数据,而不断改变训练数据权值的分布,使得训 ...

  7. sqoop-1.4.6安装与使用

    一.安装 1.下载sqoop-1.4.6-bin.tar.gz并解压 2.修改conf/sqoop-env.sh,设置如下变量: export HADOOP_COMMON_HOME=/usr/loca ...

  8. BZOJ 3924 ZJOI2015 幻想乡战略游戏 树链剖分

    题目链接:https://www.luogu.org/problemnew/show/P3345(bzoj权限题) 题意概述:动态维护树的上所有点到这棵树的带权重心的距离和.N,Q<=10000 ...

  9. SPOJ 8073 The area of the union of circles(计算几何の圆并)(CIRU)

    Description You are given N circles and expected to calculate the area of the union of the circles ! ...

  10. POJ 2653 Pick-up sticks(线段判交)

    Description Stan has n sticks of various length. He throws them one at a time on the floor in a rand ...