【题解】Atcoder AGC#16 E-Poor Turkeys
%拜!颜神怒A此题,像我这样的渣渣只能看看题解度日╭(╯^╰)╮在这里把两种做法都记录一下吧~
题解做法:可以考虑单独的一只鸡 u 能否存活。首先我们将 u 加入到集合S。然后我们按照时间倒序往回推,如果在时间 t 的时候发现有 u 和 v 同时被抉择,为了保证 u 的存活我们只能杀掉 v,也就是说在 t - 1的时刻 v 必须存活。这时我们将 v 加入到集合 S 中,再继续进行这个过程。如果在某个时刻我们发现 u 和 v 同时被抉择,可 u 和 v 都已经在集合中出现过了(要求在这个时刻一并存活),这样显然是非法的。所以可以判定 u 没有存活的可能。
如果一只鸡 u 能够存活,我们把这个过程中获得的 S 集合称作 \(S_{u}\) 。u 和 v 能够共存的充要条件即为 u 和 v 均有存活的可能,且 \(S_{u}\) 和 \(S_{v}\) 两个集合不存在交集。为什么呢?因为一只鸡在 t 时刻出现在了 S 集合中,说明它将在 t 时刻被杀掉。如果两个集合中 x 出现的时间不同,那么出现了冲突;但它们又不可能在同一个时间出现,因为一个时间节点只有唯一的一个抉择,反推回去也必然都是一样的,但开始的节点一个是 u,一个是 v,所以不可能。得证。
代码:
#include <bits/stdc++.h>
using namespace std;
#define maxn 405
#define maxm 100500
int n, m, x[maxm], y[maxm], mark[maxn];
int ans, S[maxn][maxn]; int read()
{
int x = , k = ;
char c; c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} int main()
{
n = read(), m = read();
for(int i = ; i <= m; i ++) x[i] = read(), y[i] = read();
for(int i = ; i <= n; i ++)
{
memset(mark, , sizeof(mark));
mark[i] = ; S[i][++ S[i][]] = i;
for(int j = m; j >= ; j --)
{
if(mark[x[j]] && mark[y[j]]) { S[i][] = -; break; }
if(mark[x[j]]) mark[y[j]] = ;
else if(mark[y[j]]) mark[x[j]] = ;
}
if(S[i][] == -) continue;
for(int j = ; j <= n; j ++)
if(mark[j]) S[i][] ++, S[i][S[i][]] = j;
} for(int i = ; i <= n; i ++)
for(int j = i + ; j <= n; j ++)
{
if(S[i][] == - || S[j][] == -) continue;
memset(mark, , sizeof(mark)); bool flag = ;
for(int k = ; k <= S[i][]; k ++) mark[S[i][k]] = ;
for(int k = ; k <= S[j][]; k ++)
if(mark[S[j][k]]) { flag = ; break; }
if(flag) ans ++;
}
printf("%d\n", ans);
return ;
}
下面是颜神的解法(并没有代码...)也非常的妙,而且复杂度比题解还低……可以考虑建出一张图,在这张图上面所有有连边的鸡均无法共存来获得答案。那么如何建出这张图?一个人选择了 u 和 v 这两只鸡,那么这两只鸡是一定不可能共存的。假设我们在 t - 1 时刻建出的图满足在 t - 1 时刻及之前出现的所有抉择所限制不能共存的鸡均有连边,那么考虑加入t时刻的抉择之后会对这张图产生什么影响。
考虑 u 和 v 的抉择,会使哪些原本可以和 u 共存的鸡不能再和 u 共存?
如果图中的一只鸡 x 与 u 没有连边,也与 v 没有连边,那么它与 u 的生死无关;
如果一只鸡 x 与 v 有连边,而与 u 没有连边,说明 u 和 x 不能共存,我们添加一条从 u 到 x 的边。因为 x 与 v 不能共存,所以若 x 存活,v 一定死亡。那么新的 u,v 边一定会导致 u 的死亡;若 x 死亡,那么 u 可能依然存活,也可能已经死亡;但在这两种情况下,x 都不能与 u 共存。对于 v 我们也是一样的添边。
最后检查一下哪些节点是可以共存的即可。
【题解】Atcoder AGC#16 E-Poor Turkeys的更多相关文章
- [题解] Atcoder AGC 005 F Many Easy Problems NTT,组合数学
题目 观察当k固定时答案是什么.先假设每个节点对答案的贡献都是\(\binom{n}{k}\),然后再减掉某个点没有贡献的选点方案数.对于一个节点i,它没有贡献的方案数显然就是所有k个节点都选在i连出 ...
- AGC 16 D - XOR Replace
AGC 16 D - XOR Replace 附上attack(自为风月马前卒爷) 的题解 Problem Statement There is a sequence of length N: a=( ...
- [AGC016E]Poor Turkeys
[AGC016E]Poor Turkeys 题目大意: 有\(n(n\le400)\)只火鸡,编号为\(1\)到\(n\),有\(m(m\le10^5)\)个人,每人指定了两只火鸡\(x\)和\(y\ ...
- Atcoder AGC016 E Poor Turkeys
比赛的时候口胡这道题口胡了一年,看完题解被教做人 题意:有n只火鸡,m个猎人按序来杀火鸡,从自己预先选的两只中杀一只,问有多少火鸡对可以同时存活 考虑对于每一只火鸡i,按时间逆序维护一个最小的集合Si ...
- AtCoder Grand Contest 016 E - Poor Turkeys
题目传送门:https://agc016.contest.atcoder.jp/tasks/agc016_e 题目大意: 有\(N\)只火鸡,现有\(M\)个人,每个人指定了两只火鸡\(x,y\),每 ...
- 【题解】Atcoder AGC#01 E-BBQ Hard
计数题萌萌哒~ 这道题其实就是统计 \(\sum_{i=1}^{n}\sum_{j=i+1}^{n}C\binom{a[i] + a[j]}{a[i] + a[j] + b[i] + b[j]}\) ...
- 【题解】Atcoder AGC#03 E-Sequential operations on Sequence
仙题膜拜系列...首先我们可以发现:如果在截取了一段大的区间之后再截取一段小的区间,显然是没有什么用的.所以我们可以将操作序列变成单调递增的序列. 然后怎么考虑呢?启示:不一定要考虑每一个数字出现的次 ...
- 【做题记录】AtCoder AGC做题记录
做一下AtCoder的AGC锻炼一下思维吧 目前已做题数: 75 总共题数: 239 每一场比赛后面的字母是做完的题,括号里是写完题解的题 AGC001: ABCDEF (DEF) AGC002: A ...
- AtCoder AGC #2 Virtual Participation
在知乎上听zzx大佬说AGC练智商...于是试了一下 A.Range Product 给$a$,$b$,求$\prod^{b}_{i=a}i$是正数,负数还是$0$ ...不写了 B.Box and ...
随机推荐
- Intellij打包jar文件,“java.lang.SecurityException: Invalid signature file digest for Manifest main attrib
下面是使用Intellij 打包jar文件的步骤,之后会有运行jar文件时遇到的错误. 打包完成. ================================================== ...
- underscore.js 分析 第一天
Underscore 是一个非常实用的Javascript类库. 通过研究他能提高自身的JS水平. 我们看到整个代码被 (function() { /* 代码 */ }.call(this)); 包 ...
- NB-IOT连接基站需要的步骤
本次使用华为海思Hi2110芯片,657SP3版本软件,利尔达的NB-IOT模块,串口波特率9600,基本需要5个AT指令. 1.上电之后设置IEMI号码,见模组上面的标签.AT+NTSETID=1, ...
- Eclipse - 配置优化
去除不需要的启动加载项 Window --> Preferences -->General --> Startup and Shutdown 关闭自动更新 Window --> ...
- 使用keytool工具产生带根CA和二级CA的用户证书
使用keytool工具产生带根CA和二级CA的用户证书 1 生成根CA 1.1 生成根CA证书 根CA实际是一张自签CA,自签CA的使用者和颁发者都是它自己.使用下面的命令生成根证书,如果没有指定 ...
- react组件性能
一.渲染原理 二.性能优化 三.Immutable在性能优化中的作用
- 对JSON的理解
JSON语法: JSON是一种结构化数据,它是一种数据格式 JSON可以概括为三种类型:简单值.对象.数组 注意:JSON不支持变量.函数和对象实例 一.JSON简单值 包括字符串.数值.布尔值.和n ...
- MySQL☞数值处理函数
1.round():四舍五入函数 round(数值,参数):如果参数的值为正数,表示保留几位小数,如果参数的值为0,则只保留正数部分们如果参数的值为负数,表示对小数点前第几位进行四舍五入. Eg:(1 ...
- Siki_Unity_1-1_Unity零基础入门_打砖块
1-1 Unity零基础入门 打砖块 任务1:素材源码 www.sikiedu.com/course/77 任务2:Unity介绍 王者荣耀,球球大作战等游戏都是用unity开发的 跨平台的游戏引擎 ...
- 浅谈java中接口与抽象类之间的异同
刚学习java的时候,总觉得接口和抽象类很像,但又说不上具体有什么区别.今天静下来,翻翻书,查查资料,做个小结.首先举两个例子,看看interface和abstract class 在“外形”上有啥异 ...