http://www.lydsy.com/JudgeOnline/problem.php?id=3930

https://www.luogu.org/problemnew/show/P3172#sub

我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案。小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究。然而他很快发现工作量太大了,于是向你寻求帮助。你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个。由于方案数较大,你只需要输出其除以1000000007的余数即可。

参考:

http://blog.csdn.net/u012288458/article/details/51024404

http://blog.csdn.net/TA201314/article/details/50963772

(然而上面这两位(自我感觉)或多或少都有问题)

3.25更新,已用代码实现本算法。


首先想到莫比乌斯反演,你们dp都是怎么想到的啊喂。

先行特判掉\(n=1\)和\(l>r\)和\(k>r\)的情况。

那么开始推式子,注意为了本人的习惯把h改为了r:

\(\sum_{i_1=l}^r\sum_{i_2=l}^r\cdots\sum_{i_n=l}^r[gcd(i_1,i_2,\cdots,i_n)=k]\)

\(=\sum_{i_1=\lceil\frac{l}{k}\rceil}^{\lfloor\frac{r}{k}\rfloor}\sum_{i_2=\lceil\frac{l}{k}\rceil}^{\lfloor\frac{r}{k}\rfloor}\cdots\sum_{i_n=\lceil\frac{l}{k}\rceil}^{\lfloor\frac{r}{k}\rfloor}[gcd(i_1,i_2,\cdots,i_n)=1]\)

\(=\sum_{i_1=\lceil\frac{l}{k}\rceil}^{\lfloor\frac{r}{k}\rfloor}\sum_{i_2=\lceil\frac{l}{k}\rceil}^{\lfloor\frac{r}{k}\rfloor}\cdots\sum_{i_n=\lceil\frac{l}{k}\rceil}^{\lfloor\frac{r}{k}\rfloor}\sum_{d|gcd(i_1,i_2,\cdots,i_n)}\mu(d)\)

\(=\)套路(为了方便起见,下文开始\(\lfloor\frac{r}{k}\rfloor=r,\lceil\frac{l}{k}\rceil=l\))

\(=\sum_{d=1}^{r-l}(l\)到\(r\)的\(d\)的倍数的个数\()^n\mu(d)\)


PS1:这里有一个奇妙的性质那就是在\([l,r]\)区间中任取两个不相等的数,则他们的最大公约数不大于\(r-l\)。

问了数竞大佬,貌似给了一个靠谱的证明?

我们取\(ij\)两个互质的数,显然它们\(gcd=1\),那么我们给他们同时乘数m,则它们的\(gcd=m\),而\(r-l\)最小即为\((j-i)*m>=m\),问题得证。


PS2:为什么括号内不是一个式子呢,因为注意对于有相同数的数对我们没法处理,所以要减去它们,于是边算边记录每个数的出现次数,最后的\(cnt[i]\)表示的就是有两个或以上\(i\)的数对的个数,答案减去它们即可。

同时注意如果\(l=1\)的话则\(l\)到\(r\)之间存在\(k\)所以\(n\)个\(k\)是成立的于是不能多减。

处理\(cnt\)用跳着枚举的方法,不过复杂度并没因此变高到哪里去。

本蒟蒻不太会算复杂度,大概是\(O((r-l)*(1/1+1/2+...+1/(r-l))=\) \(O((r-l)log(r-l))\),如果对\(\mu=0\)的情况特判掉的话复杂度会再次减少


(终于证明完美了,如果有谁能论述一下网上莫比乌斯反演题解的正确性非常欢迎(我是真的没看懂TAT))

  1. #include<cstdio>
  2. #include<queue>
  3. #include<map>
  4. #include<cstring>
  5. #include<iostream>
  6. #include<algorithm>
  7. using namespace std;
  8. typedef long long ll;
  9. const int N=1e5+5;
  10. const ll p=1e9+7;
  11. ll n,k,l,r,su[N],miu[N],cnt[N];
  12. bool he[N];
  13. ll pow(ll x,ll y){
  14. ll res=1;
  15. while(y){
  16. if(y&1)res=res*x%p;
  17. x=x*x%p;
  18. y>>=1;
  19. }
  20. return res;
  21. }
  22. void Euler(int n){
  23. int tot=0;
  24. miu[1]=1;
  25. for(int i=2;i<=n;i++){
  26. if(!he[i]){
  27. su[++tot]=i;
  28. miu[i]=-1;
  29. }
  30. for(int j=1;j<=tot;j++){
  31. if(i*su[j]>n)break;
  32. he[i*su[j]]=1;
  33. if(i%su[j]==0){
  34. miu[i*su[j]]=0;break;
  35. }
  36. else miu[i*su[j]]=-miu[i];
  37. }
  38. }
  39. return;
  40. }
  41. int main(){
  42. scanf("%lld%lld%lld%lld",&n,&k,&l,&r);
  43. if(l>r||k>r){
  44. puts("0");
  45. return 0;
  46. }
  47. if(n==1){
  48. if(l<=k&&k<=r)puts("1");
  49. else puts("0");
  50. return 0;
  51. }
  52. Euler(1e5);
  53. l=(l%k!=0)+l/k;r/=k;
  54. ll ans=0;
  55. for(int i=r-l;i>=1;i--){
  56. if(miu[i]){
  57. int j=l,tot=0;
  58. if(j%i!=0)j=j/i*i+i;
  59. while(j<=r){
  60. cnt[j-l]+=miu[i];
  61. j+=i;tot++;
  62. }
  63. ans=(ans+miu[i]*pow(tot,n)%p)%p;
  64. }
  65. }
  66. for(int i=r-l;i>=1;i--){
  67. ans=(ans-cnt[i])%p;
  68. }
  69. if(l==1)ans=(ans-(cnt[0]-1))%p;
  70. else ans=(ans-cnt[0])%p;
  71. printf("%lld\n",(ans+p)%p);
  72. return 0;
  73. }

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

BZOJ3930:[CQOI2015]选数——题解的更多相关文章

  1. bzoj3930[CQOI2015]选数 容斥原理

    3930: [CQOI2015]选数 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1383  Solved: 669[Submit][Status] ...

  2. BZOJ3930: [CQOI2015]选数

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3930 容斥原理. 令l=(L-1)/k,r=R/k,这样找k的倍数就相当于找1的倍数. 设F[ ...

  3. BZOJ3930 [CQOI2015]选数 【容斥】

    题目 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研 ...

  4. BZOJ3930 [CQOI2015]选数【莫比乌斯反演】

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  5. 【BZOJ3930】[CQOI2015]选数 莫比乌斯反演

    [BZOJ3930][CQOI2015]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律 ...

  6. BZOJ 3930: [CQOI2015]选数 递推

    3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...

  7. 【BZOJ3930】选数(莫比乌斯反演,杜教筛)

    [BZOJ3930]选数(莫比乌斯反演,杜教筛) 题面 给定\(n,K,L,R\) 问从\(L-R\)中选出\(n\)个数,使得他们\(gcd=K\)的方案数 题解 这样想,既然\(gcd=K\),首 ...

  8. 【BZOJ3930】选数

    [BZOJ3930]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选 ...

  9. 洛谷 [CQOI2015]选数 解题报告

    [CQOI2015]选数 题目描述 我们知道,从区间\([L,H]\)(\(L\)和\(H\)为整数)中选取\(N\)个整数,总共有\((H-L+1)^N\)种方案. 小\(z\)很好奇这样选出的数的 ...

随机推荐

  1. 【原创】MyEclipse反编译添加jadclipse_3.3.0 曲折的完美解决

    本人QQ:9715234 (java屌丝一枚) 共三部分 一.下载两个文件exe和jar 1.http://nchc.dl.sourceforge.net/project/jadclipse/jadc ...

  2. MySql 增加字段 删除字段 修改字段名称 修改字段类型

    //1.增加一个字段 alter table user add COLUMN new1 VARCHAR(20) DEFAULT NULL; //增加一个字段,默认为空 alter table user ...

  3. android 学习四 ContentProvider

    1.系统自带的许多数据(联系人,本地信息等)保存在sqllite数据库,然后封装成许多ContentProvider来供其他程序访问. 2.对sqllite数据库的操作,可以在命令行通过adb工具登录 ...

  4. Ruby 基础教程1-7

    函数: foo(x,y,z) foo(x,*args) foo(x,*args,c) foo(x=0,y="a") 2.0以后参数可以关键字指定 foo(x:0,y:0,z:0) ...

  5. vuecli结合eslint静态检查

    vuecli结合eslint静态检查 搭建vue项目开发可能选择vue-cli项目脚手架快速创建vue项目.(https://github.com/vuejs/vue-cli) 安装vue-cli n ...

  6. sql注入--高权限,load_file读写文件

    select '<?php eval($_POST[123]) ?>' into outfile '/var/www/html/1.php'; 1.MYSQL新特性限制文件写入及替代方法 ...

  7. 100. Remove Duplicates from Sorted Array && 101. Remove Duplicates from Sorted Array II [easy]

    这两题类似,所以放在一起,先看第一题: Description Given a sorted array, remove the duplicates in place such that each ...

  8. 腾讯云ubuntu安装使用MySQL

    安装步骤 ubuntu@VM---ubuntu:~$ sudo apt-get install mysql-server (密码: root/root) ubuntu@VM---ubuntu:~$ s ...

  9. mybatis 枚举类型使用

    一.首先定义接口,提供获取数据库存取的值得方法,如下: public interface BaseEnum { int getCode(); } 二.定义mybatis的typeHandler扩展类, ...

  10. JQuery常用函数方法全集

    Attribute: $("p").addClass(css中定义的样式类型); 给某个元素添加样式 $("img").attr({src:"test ...