题面

BZOJ传送门

思路

首先考虑一个点$(x_0,y_0)$什么时候在一个圆$(x_1,y_1,\sqrt{x_12+y_12})$内

显然有:$x_12+y_12\geq (x_0-x_1)2+(y_0-y_1)2$

化简:$2x_0x_1+2y_0y_1\geq x_02+y_02$

所有含$x_1,y_1$的项挪到同一边,除掉一个$2y_0$(假设它是正的),得到:

$y_1\geq -\frac{x_0}{y_0}x_1+\frac{x_02+y_02}{2y_0}$

如果是负的:

$y_1\leq -\frac{x_0}{y_0}x_1+\frac{x_02+y_02}{2y_0}$

DUANG!半平面来了

那么现在的询问变成了:给定一个半平面,问是不是所有的点都在这个半平面的上方(或者下方)

显然,我们如果维护了所有输入节点的上下凸包,这个问题就迎刃而解了

众所周知,维护动态上下凸壳可以用$set$或者平衡树做到$O(n\log n)$

然而博主并不想写这种东西

所以他写了非常沙雕的cdq分治23333

分治

分治开始之前先按照所有询问点的斜率排个序(非询问点不管)

我们对时间顺序分治

进入分治后,首先分治左区间,返回按照横坐标排好序的左区间所有点

求出左区间中所有非询问的点的上下凸壳

然后对右边的所有询问,因为一开始排好序了,所以直接在凸壳上顺次双指针过去

注意:$y_0 > 0$的时候所有点在直线上方,用的是下凸包,反之亦然

最后分治右区间,按照x坐标归并排序,合并左右区间

就是个很模板的cdq斜率分治

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cassert>
#include<cmath>
#define sqr(x) ((x)*(x))
#define eps 1e-10
#define ll long long
using namespace std;
inline int read(){
int re=0,flag=1;char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') flag=-1;
ch=getchar();
}
while(isdigit(ch)) re=(re<<1)+(re<<3)+ch-'0',ch=getchar();
return re*flag;
}
struct node{
double x,y,k;
int id,qid,op;
inline friend double slope(const node &a,const node &b){return ((fabs(a.x-b.x)<eps)?(1e30):((a.y-b.y)/(a.x-b.x)));}
inline friend double dis(const node &a,const node &b){return sqrt(sqr(a.x-b.x)+sqr(a.y-b.y));}
inline friend double rad(const node &a){return sqrt(sqr(a.x)+sqr(a.y));}
}a[500010],tmp[500010],q1[500010],q2[500010];//q1 up q2 down
int n,top1,top2;bool ans[500010];
inline bool cmp(const node &a,const node &b){return a.k<b.k;}
void solve(int l,int r){
if(l==r) return;
int i,t1,t2,mid=(l+r)>>1; t1=l;t2=mid+1;
for(i=l;i<=r;i++){
if(a[i].id<=mid) tmp[t1++]=a[i];
else tmp[t2++]=a[i];
}
memcpy(a+l,tmp+l,sizeof(node)*(r-l+1)); solve(l,mid); top1=top2=0;
for(i=l;i<=mid;i++){
if(a[i].op) continue;
while(top1>1&&slope(q1[top1-1],q1[top1])<slope(q1[top1],a[i])+eps) top1--;
q1[++top1]=a[i];
while(top2>1&&slope(q2[top2-1],q2[top2])+eps>slope(q2[top2],a[i])) top2--;
q2[++top2]=a[i];
} t1=t2=1;
for(i=mid+1;i<=r;i++){
if(!a[i].op) continue;
if(a[i].y>0){
while(t2<top2&&slope(q2[t2],q2[t2+1])<a[i].k) t2++;
if(t2<=top2) ans[a[i].qid]&=(dis(a[i],q2[t2])<rad(q2[t2]));
}
else{
while(t1<top1&&slope(q1[top1-1],q1[top1])<a[i].k) top1--;
if(t1<=top1) ans[a[i].qid]&=(dis(a[i],q1[top1])<rad(q1[top1]));
}
} solve(mid+1,r); t1=l;t2=mid+1;
for(i=l;i<=r;i++){
if(t2==r+1||(t1<=mid&&a[t1].x<a[t2].x)) tmp[i]=a[t1++];
else tmp[i]=a[t2++];
}
memcpy(a+l,tmp+l,sizeof(node)*(r-l+1));
}
int main(){
n=read();int i,flag=0,cntq=0;
for(i=1;i<=n;i++){
scanf("%d%lf%lf",&a[i].op,&a[i].x,&a[i].y);
a[i].id=i;
if(a[i].op){
a[i].qid=++cntq;
if(flag) ans[cntq]=1;
if(a[i].y) a[i].k=-a[i].x/a[i].y;
else a[i].k=1e30;
}
else flag=1;
}
sort(a+1,a+n+1,cmp);
solve(1,n);
for(i=1;i<=cntq;i++) puts(ans[i]?"Yes":"No");
}

[BZOJ2961] 共点圆 [cdq分治+凸包]的更多相关文章

  1. BZOJ2961 共点圆[CDQ分治]

    题面 bzoj 其实就是推一下圆的式子 长成这个样子 假设要查询的点是(x, y) 某个圆心是(p, q) \((x - p)^2 + (y - q)^2 \leq p^2 + q^2\) 变成 \( ...

  2. BZOJ2961: 共点圆(CDQ分治+凸包)

    题面 传送门 题解 这题解法真是多啊--据说可以圆反演转化为动态插入半平面并判断给定点是否在半平面交中,或者化一下改成给定点判断是否所有点都在某一个半平面内-- 鉴于圆反演我也不会,这里讲一下直接推的 ...

  3. bzoj2961 共点圆 (CDQ分治, 凸包)

    /* 可以发现可行的圆心相对于我们要查询的点是在一个半平面上, 然后我们要做的就是动态维护凸壳然后用这个半平面去切它 看看是否是在合法的那一面 然后cdq分治就可以了 代码基本是抄的, */ #inc ...

  4. bzoj2961 共点圆 bzoj 4140

    题解: 比较水的一道题 首先我们化简一下式子发现是维护xxo+yyo的最值 显然是用凸包来做 我们可以直接用支持插入删除的凸包 也是nlogn的 因为没有强制在线,我们也可以cdq,考虑前面一半对答案 ...

  5. Bzoj2149拆迁队:cdq分治 凸包

    国际惯例的题面:我们考虑大力DP.首先重新定义代价为:1e13*选择数量-(总高度+总补偿).这样我们只需要一个long long就能维护.然后重新定义高度为heighti - i,这样我们能选择高度 ...

  6. BZOJ2961: 共点圆

    好久没发了 CDQ分治,具体做法见XHR的论文… /************************************************************** Problem: 29 ...

  7. [BZOJ2961]共点圆-[凸包+cdq分治]

    Description 传送门 Solution 考虑对于每一个点: 设圆的坐标为(x,y),点的坐标为(x0,y0).依题意得,当一个点在圆里,需要满足(x-x0)2+(y-y0)2<=x2+ ...

  8. bzoj 2961 共点圆 cdq+凸包+三分

    题目大意 两种操作 1)插入一个过原点的圆 2)询问一个点是否在所有的圆中 分析 在圆中则在半径范围内 设圆心 \(x,y\) 查询点\(x_0,y_0\) 则\(\sqrt{(x-x_0)^2+(y ...

  9. 【bzoj2961】共点圆 k-d树

    更新:此题我的代码设置eps=1e-8会WA,现在改为1e-9貌似T了 此题网上的大部分做法是cdq分治+凸包,然而我觉得太烦了,于是自己口胡了一个k-d树做法: 加入一个圆$(x,y)$,直接在k- ...

随机推荐

  1. spring源码-Aware-3.4

    一.Aware接口,这个也是spring的拓展之一,为啥要单独拿出来讲呢,因为他相比于BeanFactoryPostProcessor,BeanPostProcessor的实用性更加高,并且在具体的业 ...

  2. MongoDB 安装 增删改查

    MongoDB   一 介绍 1.高性能的数据存储解决方案是大多数大型Web应用程序和服务的核心.后端数据库负责存储一切东西,从用户账户的信息到购物车中的商品,以及博客和评论数据等.好的Web应用需要 ...

  3. 解决美图看看不出现在“Open with”的子菜单中的问题

    最近由于特殊需求,要使用美图看看,Win10系统,美图看看工作倒也正常,但出现一个比较郁闷的情况,就是只能在“Open with”的最下面一个子菜单中选择“Choose another app”,然后 ...

  4. SSM-最新pom.xml

    <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/20 ...

  5. 「LeetCode」0003-Add Two Numbers(Typescript)

    分析 代码 /** * @param {ListNode} l1 * @param {ListNode} l2 * @return {ListNode} */ var addTwoNumbers=fu ...

  6. 「题目代码」P1060~P1065(Java)

    P1060 谭浩强C语言(第三版)习题7.5 注意行末空格. import java.util.*; import java.io.*; import java.math.*; import java ...

  7. 棋盘问题:dfs

    Description 在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别.要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子 ...

  8. Python3 Tkinter-Scale

    1.创建 from tkinter import * root=Tk() Scale(root).pack() root.mainloop() 2.参数 from tkinter import * r ...

  9. IntelliJ IDEA 2017.3/2018.1/.2 激活

    传统的License Server方式已经无法注册IntelliJ IDEA2017.3的版本了. http://idea.lanyus.com,这个网站有破解补丁和注册码两种方式,另外http:// ...

  10. 自测之Lesson11:消息和消息队列

    题目:key及ftok函数的作用. 解答: key是用来创建消息队列的一个参数,当两个key相同时,创建消息队列会引起“误会”(除非有意为之).所以我们可以通过ftok函数来获得一个“不易重复”的ke ...