首先对于给出的图建立圆方树,然后我们分类讨论每一个点作为中间的中转站出现的情况有多少种,累积到 \(ans\) 中。

  对于圆点:在任意两个子树内分别选出一个节点都是合法的。

  对于方点:连接向方点的点均为处于一个双联通分量中的点,彼此之间两两可。所以若我们让这个双联通分量上的一个点作为中转站,在其他任意的两棵子树内挑出两个点来都是合法的。这样乍一看好像是 \(n^{2}\) 的统计方法,我们不妨改变一下:因为答案是累加起来的,我们分别考虑每一棵子树对于答案造成的贡献。这一棵子树中的点可以和另一棵子树内的点任意匹配选出两个,对于不在这两棵子树内的双联通分量上的点均产生有贡献。然后就可以愉快的 \(O(n)\) 统计啦~

#include <bits/stdc++.h>
using namespace std;
#define int long long
#define maxn 500000
int N, n, m, tot, S[maxn], fa[maxn];
int timer, dfn[maxn], low[maxn];
int ans, size[maxn], cnt[maxn];
bool vis[maxn]; struct edge
{
int cnp = , head[maxn], to[maxn], last[maxn];
void add(int u, int v)
{
if(u == v) return;
to[cnp] = v, last[cnp] = head[u], head[u] = cnp ++;
to[cnp] = u, last[cnp] = head[v], head[v] = cnp ++;
}
}E1, E2, E3; int read()
{
int x = , k = ;
char c;
c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} void Tarjan(int u)
{
dfn[u] = low[u] = ++ timer; S[++ S[]] = u;
for(int i = E1.head[u]; i; i = E1.last[i])
{
int v = E1.to[i];
if(!dfn[v])
{
Tarjan(v); low[u] = min(low[u], low[v]);
if(low[v] >= dfn[u])
{
E2.add(++ N, u); cnt[N] ++, cnt[u] ++; int x = ;
do
{
E2.add(N, x = S[S[] --]); cnt[N] ++, cnt[x] ++;
}while(x != v);
}
}
else low[u] = min(low[u], dfn[v]);
}
} void dfs(int u)
{
vis[u] = ;
if(u <= n) size[u] ++;
for(int i = E2.head[u]; i; i = E2.last[i])
{
int v = E2.to[i]; if(v == fa[u]) continue;
fa[v] = u; dfs(v); size[u] += size[v];
}
} void DP(int u)
{
for(int i = E2.head[u]; i; i = E2.last[i])
{
int v = E2.to[i]; if(v == fa[u]) continue;
DP(v);
}
int tem = ;
if(u <= n)
{
for(int i = E2.head[u]; i; i = E2.last[i])
{
int v = E2.to[i];
if(v != fa[u]) tem += (size[v]) * (tot - size[v] - );
else tem += (tot - size[u]) * (size[u] - );
}
}
else
{
if(cnt[u] > )
{
for(int i = E2.head[u]; i; i = E2.last[i])
{
int v = E2.to[i];
if(v != fa[u]) tem += (size[v]) * (tot - size[v]) * (cnt[u] - );
else tem += (tot - size[u]) * (size[u]) * (cnt[u] - );
}
}
}
ans += tem;
} signed main()
{
N = n = read(), m = read();
for(int i = ; i <= m; i ++)
{
int u = read(), v = read();
E1.add(u, v);
}
for(int i = ; i <= n; i ++)
if(!dfn[i]) Tarjan(i);
for(int i = ; i <= N; i ++)
if(!vis[i])
{
dfs(i); tot = size[i];
DP(i);
}
printf("%lld\n", ans);
return ;
}

【题解】APIO2018 Duathlon 铁人两项的更多相关文章

  1. [APIO2018] Duathlon 铁人两项 圆方树,DP

    [APIO2018] Duathlon 铁人两项 LG传送门 圆方树+简单DP. 不会圆方树的话可以看看我的另一篇文章. 考虑暴力怎么写,枚举两个点,答案加上两个点之间的点的个数. 看到题面中的一句话 ...

  2. [Luogu4630][APIO2018]Duathlon 铁人两项

    luogu 题目描述 比特镇的路网由 \(m\) 条双向道路连接的 \(n\) 个交叉路口组成. 最近,比特镇获得了一场铁人两项锦标赛的主办权.这场比赛共有两段赛程:选手先完成一段长跑赛程,然后骑自行 ...

  3. P4630 [APIO2018] Duathlon 铁人两项

    思路 圆方树,一个点双中的所有点都可以被经过,所以给圆点赋值-1,方点赋值为圆点个数,统计圆点两两之间的路径权值和即可 代码 #include <cstdio> #include < ...

  4. [APIO2018] Duathlon 铁人两项

    不经过重点,考虑点双 点双,考虑圆方树 两个点s,t,中间路径上,所有点双里的点都可以经过,特别地,s,t作为割点的时候,不能往后走,也就是不能经过身后的方点 也就是,(s,t)经过树上路径上的所有圆 ...

  5. 洛谷P4630 [APIO2018] Duathlon 铁人两项 【圆方树】

    题目链接 洛谷P4630 题解 看了一下部分分,觉得树的部分很可做,就相当于求一个点对路径长之和的东西,考虑一下能不能转化到一般图来? 一般图要转为树,就使用圆方树呗 思考一下发现,两点之间经过的点双 ...

  6. [洛谷P4630][APIO2018] Duathlon 铁人两项

    题目大意:给一张无向图,求三元组$(u,v,w)$满足$u->v->w$为简单路径,求个数 题解:圆方树,缩点后$DP$,因为同一个点双中的点一定地位相同 卡点:1.$father$数组开 ...

  7. luogu 4630 [APIO2018] Duathlon 铁人两项

    题目大意: 无向图上找三个点 a b c使存在一条从a到b经过c的路径 求取这三个点的方案数 思路: 建立圆方树 这个圆方树保证没有两个圆点相连或两个方点相连 对于每个节点x 设该节点为路径的中间节点 ...

  8. 洛谷P4630 [APIO2018] Duathlon 铁人两项 (圆方树)

    圆方树大致理解:将每个点双看做一个新建的点(方点),该点双内的所有点(圆点)都向新建的点连边,最后形成一棵树,可以给点赋予点权,用以解决相关路径问题. 在本题中,方点点权赋值为该点双的大小,因为两个点 ...

  9. 【APIO2018】铁人两项(圆方树,动态规划)

    [APIO2018]铁人两项(圆方树,动态规划) 题面 UOJ 洛谷 BZOJ 题解 嘤嘤嘤,APIO的时候把一个组合数写成阶乘了,然后这题的70多分没拿到 首先一棵树是很容易做的,随意指定起点终点就 ...

随机推荐

  1. Python之多进程多线程

    一.多进程与多线程的概念 1.多进程的概念 进程是程序在计算机上的的一次执行活动.当你运行一个程序,你就启动了一个进程.显然,程序是死的(静态的),进程是活的(动态的).进程可以分为系统进程和用户进程 ...

  2. 利尔达仿真器加有人CC3200模块USR-C322上电测试

    1. 使用利尔达的CC3200底板仿真器对有人CC3200模块USR-C322进行烧写,测试. 2. 连接的接口,需要连接6根线,如下,供电测试,第一波测试,输入+++回复a,然后在输入a,返回+OK ...

  3. SpringBoot学习:整合shiro(rememberMe记住我功能)

    项目下载地址:http://download.csdn.NET/detail/aqsunkai/9805821 首先在shiro配置类中注入rememberMe管理器 /** * cookie对象; ...

  4. shell 批量压缩指定目录及子目录内图片的方法

    用户上传的图片,一般都没有经过压缩,造成空间浪费.因此需要编写一个程序,查找目录及子目录的图片文件(jpg,gif,png),将大于某值的图片进行压缩处理. 查看目录文件大小 du -h --max- ...

  5. 从细节处谈Android冷启动优化

    本文来自网易云社区 Android APP冷启动优化,对于Android开发同学而言可能是个老生常谈的技优了. 之所以花时间写一篇冷启动优化的文章: 我想从另外一个角度来说冷启动优化,如题所述,从细节 ...

  6. java 二叉树的创建 遍历

    本来说复习一下BFS和DFS,辗转就来到了二叉树...本文包括二叉树的创建和遍历 概念 数据:1 2 3 4 5 6 7生成一颗二叉树 上面的数是数据,不是位置,要区别一下数据和位置 红色的代表位置, ...

  7. Qt-QML-Charts-ChartView-编译错误-ASSERT: "!"No style available without QApplication!

    昨天本来是回家想好好琢磨一下使用Chart来绘制曲线的,奈何在建立项目的时候也就卡住了,加上心情比较烦躁,也没有耐心寻找答案就草草了事.所以今天继续搞定这个. 上图是Qt 的编译错误截图 QML de ...

  8. Git 新建文件并提交

    1.创建一个readme.txt. cd /home/cyp/learngit touch readme.txt vim readme.txt 编写内容, wq 保存推出 2.提交步骤 2.1  gi ...

  9. unity中虚拟摇杆的实现

    实现效果: 实现: 使用NGUI添加虚拟摇杆背景和其子物体按钮,为按钮Attach  boxcollider和ButtionScript.为按钮添加如下脚本: 注意:其中的静态属性可以在控制物体移动的 ...

  10. Python全栈 进阶(进阶内容都在这了)

    原文地址 https://yq.aliyun.com/articles/632754?spm=a2c4e.11155435.0.0.23eb3312feB6dG ................... ...