【BZOJ1486】最小圈(分数规划)
【BZOJ1486】最小圈(分数规划)
题面
题解
分数规划
二分答案之后将边权修改为边权减去二分值
检查有无负环即可
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<stack>
using namespace std;
#define ll long long
#define RG register
#define MAX 3003
struct Line{int v,next;double w;}e[10010];
int h[MAX],cnt=1;
inline void Add(int u,int v,double w){e[cnt]=(Line){v,h[u],w};h[u]=cnt++;}
int n,m,U,V;
double dis[MAX],W;
bool vis[MAX];
bool SPFA(int u,double mid)
{
vis[u]=true;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;
if(dis[v]>dis[u]+e[i].w-mid)
{
dis[v]=dis[u]+e[i].w-mid;
if(vis[v]||SPFA(v,mid))return true;
}
}
vis[u]=false;return false;
}
bool check(double mid)
{
for(int i=1;i<=n;++i)dis[i]=0,vis[i]=false;
for(int i=1;i<=n;++i)if(SPFA(i,mid))return true;
return false;
}
int main()
{
scanf("%d%d",&n,&m);
double l=+2e7,r=-2e7;
for(int i=1;i<=m;++i)
{
scanf("%d%d%lf",&U,&V,&W);
l=min(l,W),r=max(r,W),Add(U,V,W);
}
while(r-l>1e-9)
{
double mid=(l+r)/2;
if(check(mid))r=mid;
else l=mid;
}
printf("%.8lf\n",l);
return 0;
}
【BZOJ1486】最小圈(分数规划)的更多相关文章
- [HNOI2009]最小圈 分数规划 spfa判负环
[HNOI2009]最小圈 分数规划 spfa判负环 题面 思路难,代码简单. 题目求圈上最小平均值,问题可看为一个0/1规划问题,每个边有\(a[i],b[i]\)两个属性,\(a[i]=w(u,v ...
- 【BZOJ1486】[HNOI2009]最小圈 分数规划
[BZOJ1486][HNOI2009]最小圈 Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 3 Samp ...
- 【BZOJ1486】【HNOI2009】最小圈 分数规划 dfs判负环。
链接: #include <stdio.h> int main() { puts("转载请注明出处[辗转山河弋流歌 by 空灰冰魂]谢谢"); puts("网 ...
- [bzoj1486][HNOI2009]最小圈——分数规划+spfa+负环
题目 传送门 题解 这个题是一个经典的分数规划问题. 把题目形式化地表示,就是 \[Minimize\ \lambda = \frac{\sum W_{i, i+1}}{k}\] 整理一下,就是 \[ ...
- 【bzoj1486】[HNOI2009]最小圈 分数规划+Spfa
题目描述 样例输入 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 3 样例输出 3.66666667 题解 分数规划+Spfa判负环 二分答案mid,并将所有边权减去mid,然后再判 ...
- Luogu3199 HNOI2009 最小圈 分数规划、SPFA
传送门 可以发现它的式子是一个分数规划的式子,所以可以二分答案,将所有边权减掉当前二分值之后跑一边$SPFA$判断负环即可. 然而这道题把$BFS-SPFA$卡掉了却没卡$DFS-SPFA$ 出题人: ...
- BZOJ1486 HNOI2009 最小圈 【01分数规划】
BZOJ1486 HNOI2009 最小圈 Description 应该算是01分数规划的裸板题了吧..但是第一次写还是遇到了一些困难,vis数组不清零之类的 假设一个答案成立,那么一定可以找到一个环 ...
- Bzoj1486/洛谷P3199 最小圈(0/1分数规划+spfa)/(动态规划+结论)
题面 Bzoj 洛谷 题解(0/1分数规划+spfa) 考虑\(0/1\)分数规划,设当前枚举到的答案为\(ans\) 则我们要使(其中\(\forall b_i=1\)) \[ \frac{\sum ...
- 2018.09.24 bzoj1486: [HNOI2009]最小圈(01分数规划+spfa判负环)
传送门 答案只保留了6位小数WA了两次233. 这就是一个简单的01分数规划. 直接二分答案,根据图中有没有负环存在进行调整. 注意二分边界. 另外dfs版spfa判负环真心快很多. 代码: #inc ...
随机推荐
- JDBC事务机制
package com.jdbc.test; import java.sql.*; /** * 数据库的引擎必须是innodb */ public class Demo02 { PreparedSta ...
- #define NULL ((void *)0)引起的风波
1. 看下宏定义的结构体 typedef struct { ]; //CMEI/IMEI ]; //server ]; //CMEI/IMEI } Options; 2. 定义的NULL #defin ...
- 一个只有十行的精简MVVM框架(下篇)
本文来自网易云社区. 让我们来加点互动 前面学生信息的身高的单位都是默认m,如果新增一个需求,要求学生的身高的单位可以在m和cm之间切换呢? 首先需要一个变量来保存度量单位,因此这里必须用一个新的Mo ...
- 引领技术变革,腾讯云、腾讯WeTest和英特尔,合作布局云游戏
WeTest 导读 ChinaJoy作为中国泛娱乐产业年度风向标,受到全球业界的高度关注.在本届ChinaJoy上,腾讯云.腾讯WeTest和英特尔,合作为游戏玩家.游戏开发者等业界人士联合展出了云游 ...
- 对网页进行截图(selenium)
import os def insert_img(driver,file_name): #获取当前路径,并转换为字符串 base_dir=str(os.path.dirname(__file__)) ...
- Unity操作小技巧
1.操作类 1)F:选择物体后聚焦 2)V:选择物体的顶点,顶点吸附 3)Ctrl:摁住后拖动物体,可以按照系统设置的步长进行移动(Edit -> Snap setting) 4)Q W E R ...
- PNG和PVR之间互相转换的脚本
项目经常会将png和pvr之间互相转换,这里mark一个脚本,会将当前目录下的文件全部批量转换 png转换成pvr @echo off path %path%;"C:\Program Fil ...
- nginx 添加的配置信息
使用logrotate管理Nginx日志配置如下: [root@vm-10-129-93-51 nginx]# vi /etc/logrotate.d/nginx /letv/log/nginx/*. ...
- 关于ES6-{块级作用域 let const 解构赋值 数组 字符串 函数的扩展 箭头函数}
关于ES6 块级作用域 任何一对花括号({})中的语句集都属于一个块,在块中声明的变量在代码块外都是不可访问的,称之为块级作用域,ES5以前没有块级作用域 let let 是ES6新增的声明变量的一种 ...
- MFC最基本动作(如创建窗口,点击取消等)函数的执行顺序
一.MFC应用程序中处理消息的顺序: 1.AfxWndProc() 该函数负责接收消息,找到消息所属的CWnd对象,然后调用AfxCallWndProc2.AfxCallWndProc() ...