Tricks Device

题目连接:

http://acm.hdu.edu.cn/showproblem.php?pid=5294

Description

Innocent Wu follows Dumb Zhang into a ancient tomb. Innocent Wu’s at the entrance of the tomb while Dumb Zhang’s at the end of it. The tomb is made up of many chambers, the total number is N. And there are M channels connecting the chambers. Innocent Wu wants to catch up Dumb Zhang to find out the answers of some questions, however, it’s Dumb Zhang’s intention to keep Innocent Wu in the dark, to do which he has to stop Innocent Wu from getting him. Only via the original shortest ways from the entrance to the end of the tomb costs the minimum time, and that’s the only chance Innocent Wu can catch Dumb Zhang.

Unfortunately, Dumb Zhang masters the art of becoming invisible(奇门遁甲) and tricks devices of this tomb, he can cut off the connections between chambers by using them. Dumb Zhang wanders how many channels at least he has to cut to stop Innocent Wu. And Innocent Wu wants to know after how many channels at most Dumb Zhang cut off Innocent Wu still has the chance to catch Dumb Zhang.

Input

There are multiple test cases. Please process till EOF.

For each case,the first line must includes two integers, N(<=2000), M(<=60000). N is the total number of the chambers, M is the total number of the channels.

In the following M lines, every line must includes three numbers, and use ai、bi、li as channel i connecting chamber ai and bi(1<=ai,bi<=n), it costs li(0<li<=100) minute to pass channel i.

The entrance of the tomb is at the chamber one, the end of tomb is at the chamber N.

Output

Output two numbers to stand for the answers of Dumb Zhang and Innocent Wu’s questions.

Sample Input

8 9

1 2 2

2 3 2

2 4 1

3 5 3

4 5 4

5 8 1

1 6 2

6 7 5

7 8 1

Sample Output

2 6

Hint

题意

给一个无向图,然后问你最少删除多少个边使得最短路改变。

最多删除多少条边使得最短路仍然不变。

题解:

第一个问题,我们把所有最短路的边扔去跑最小割就好了。

第二个问题,跑一个dij然后除了最短的那条最短路以外,其他的边都删除就好了。

代码

#include <bits/stdc++.h>

using namespace std;
const int maxn = 2000 + 50;
struct edge{
int v , nxt , w;
}e[60000 * 3];
struct node{
int x , y , z;
friend bool operator < (const node & a ,const node & b){
return a.y > b.y || ( a.y == b.y && a.z > b.z );
}
node(int x = 0 ,int y = 0 , int z = 0) : x(x) , y(y) , z(z) {}
};
int n , m , head[maxn] , tot , flag[maxn];
pair < int , int > dp1[maxn] , dp2[maxn];
int E1[60000*2+5],E2[60000*2+5],E3[60000*2+5]; namespace NetFlow
{
const int MAXN=100000,MAXM=1000000,inf=1e9;
struct Edge
{
int v,c,f,nx;
Edge() {}
Edge(int v,int c,int f,int nx):v(v),c(c),f(f),nx(nx) {}
} E[MAXM];
int G[MAXN],cur[MAXN],pre[MAXN],dis[MAXN],gap[MAXN],N,sz;
void init(int _n)
{
N=_n,sz=0; memset(G,-1,sizeof(G[0])*N);
}
void link(int u,int v,int c)
{
E[sz]=Edge(v,c,0,G[u]); G[u]=sz++;
E[sz]=Edge(u,0,0,G[v]); G[v]=sz++;
}
bool bfs(int S,int T)
{
static int Q[MAXN]; memset(dis,-1,sizeof(dis[0])*N);
dis[S]=0; Q[0]=S;
for (int h=0,t=1,u,v,it;h<t;++h)
{
for (u=Q[h],it=G[u];~it;it=E[it].nx)
{
if (dis[v=E[it].v]==-1&&E[it].c>E[it].f)
{
dis[v]=dis[u]+1; Q[t++]=v;
}
}
}
return dis[T]!=-1;
}
int dfs(int u,int T,int low)
{
if (u==T) return low;
int ret=0,tmp,v;
for (int &it=cur[u];~it&&ret<low;it=E[it].nx)
{
if (dis[v=E[it].v]==dis[u]+1&&E[it].c>E[it].f)
{
if (tmp=dfs(v,T,min(low-ret,E[it].c-E[it].f)))
{
ret+=tmp; E[it].f+=tmp; E[it^1].f-=tmp;
}
}
}
if (!ret) dis[u]=-1; return ret;
}
int dinic(int S,int T)
{
int maxflow=0,tmp;
while (bfs(S,T))
{
memcpy(cur,G,sizeof(G[0])*N);
while (tmp=dfs(S,T,inf)) maxflow+=tmp;
}
return maxflow;
}
} using namespace NetFlow; void My_init(){
for(int i = 1 ; i <= n ; ++ i) head[i] = -1 , dp1[i].first = 1<<29 , dp2[i].first = 1<<29 , flag[i] = 0;
tot = 0;
} void Edge_link(int u , int v , int w){
e[tot].v=v,e[tot].nxt=head[u],e[tot].w=w,head[u]=tot++;
} void Dijkstra( int start , pair < int , int > * p ){
priority_queue<node>Q;
Q.push(node( start , 0 , 0 ));
p[start]=make_pair(0,0);
while(!Q.empty()){
node S = Q.top() ; Q.pop();
int x = S.x;
pair < int , int > Ls = make_pair( S.y , S.z );
if( Ls != p[x] ) continue;
for(int i = head[x] ; ~i ; i = e[i].nxt){
int v = e[i].v;
int w = e[i].w;
pair < int , int > newLs = make_pair( Ls.first + w , Ls.second + 1 );
if( newLs.first < p[v].first || (newLs.first == p[v].first && newLs.second < p[v].second)){
p[v] = newLs;
Q.push( node( v , newLs.first , newLs.second ) );
}
}
}
} int main(int argc,char *argv[]){
while( ~ scanf("%d%d" , &n , &m ) ){
My_init();
for(int i = 1 ; i <= m ; ++ i){
int u , v , w;
scanf("%d%d%d",&u,&v,&w);
E1[i]=u,E2[i]=v,E3[i]=w;
Edge_link( u , v , w );
Edge_link( v , u , w );
}
Dijkstra( 1 , dp1 );
Dijkstra( n , dp2 );
int mincost = dp1[n].first;
init( n + 4 );
for(int i = 1 ; i <= m ; ++ i)
{
if(dp1[E1[i]].first + dp2[E2[i]].first + E3[i] == mincost)
link(E1[i],E2[i],1);
if(dp2[E1[i]].first + dp1[E2[i]].first + E3[i] == mincost)
link(E2[i],E1[i],1);
}
printf("%d %d\n" , dinic( 1 , n ) , m - dp1[n].second );
}
return 0;
}

HDU 5294 Tricks Device 网络流 最短路的更多相关文章

  1. HDU 5294 Tricks Device (最短路,最大流)

    题意:给一个无向图(连通的),张在第n个点,吴在第1个点,‘吴’只能通过最短路才能到达‘张’,两个问题:(1)张最少毁掉多少条边后,吴不可到达张(2)吴在张毁掉最多多少条边后仍能到达张. 思路:注意是 ...

  2. HDU 5294 Tricks Device (最大流+最短路)

    题目链接:HDU 5294 Tricks Device 题意:n个点,m条边.而且一个人从1走到n仅仅会走1到n的最短路径.问至少破坏几条边使原图的最短路不存在.最多破坏几条边使原图的最短路劲仍存在 ...

  3. hdu 5294 Tricks Device 最短路建图+最小割

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=5294 Tricks Device Time Limit: 2000/1000 MS (Java/Other ...

  4. HDU 5294 Tricks Device(多校2015 最大流+最短路啊)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5294 Problem Description Innocent Wu follows Dumb Zha ...

  5. HDU 5294 Tricks Device 最短路+最大流

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5294 题意: 给你个无向图: 1.求最少删除几条边就能破坏节点1到节点n的最短路径, 2.最多能删除 ...

  6. hdu 5294 Tricks Device(2015多校第一场第7题)最大流+最短路

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5294   题意:给你n个墓室,m条路径,一个人在1号墓室(起点),另一个人在n号墓室(终点),起点的那 ...

  7. SPFA+Dinic HDOJ 5294 Tricks Device

    题目传送门 /* 题意:一无向图,问至少要割掉几条边破坏最短路,问最多能割掉几条边还能保持最短路 SPFA+Dinic:SPFA求最短路时,用cnt[i]记录到i最少要几条边,第二个答案是m - cn ...

  8. HDOJ 5294 Tricks Device 最短路(记录路径)+最小割

    最短路记录路径,同一时候求出最短的路径上最少要有多少条边, 然后用在最短路上的边又一次构图后求最小割. Tricks Device Time Limit: 2000/1000 MS (Java/Oth ...

  9. HDU5294——Tricks Device(最短路 + 最大流)

    第一次做最大流的题目- 这题就是堆模板 #include <iostream> #include <algorithm> #include <cmath> #inc ...

随机推荐

  1. 函数导出在kvm_intel.ko,kvm.ko不共享

    KVM一共包含了三个内核模块,kvm_intel.ko,kvm_amd.ko,kvm.ko.其中两个重要文件x86.c和vmx.c在编译后分别会生成kvm_intel.ko和kvm.ko两个内核模块, ...

  2. TCP之非阻塞connect和accept

    套接字的默认状态是阻塞的,这就意味着当发出一个不能立即完成的套接字调用时,其进程将被投入睡眠,等待响应操作完成,可能阻塞的套接字调用可分为以下四类: (1) 输入操作,包括read,readv,rec ...

  3. sicily 1046. Plane Spotting

    1046. Plane Spotting Time Limit: 1sec    Memory Limit:32MB  Description Craig is fond of planes. Mak ...

  4. mac cocoapod安装过程

    cocoapod: 自动化管理第三方开发包的一个插件, 废话不多说, 一个新手只需做如下几个步骤 1-> 安装ruby环境(可忽略, 不是必要) 1.1 首先我们先看看当前你机器上ruby的版本 ...

  5. C基础 mariadb处理简单案例

    引言 MariaDB 是一款灰常不错开源数据库. 这里直接用它来解决业务问题. 业务需求: 现在数据库中表示按照天分表的. 突然我们需要按照月来处理数据. 例如输入一个玩家id, 查找这个玩家这个月内 ...

  6. elasticsearch索引加别名

    curl -XPOST 'http://localhost:9200/_aliases' -d '    {        "actions": [            {&qu ...

  7. linux命令(45):diff命令

    1.命令格式: diff[参数][文件1或目录1][文件2或目录2] 2.命令功能: diff命令能比较单个文件或者目录内容.如果指定比较的是文件,则只有当输入为文本文件时才有效.以逐行的方式,比较文 ...

  8. HDU 3669 Cross the Wall(斜率DP+预处理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3669 题目大意:有n(n<=50000)个矩形,每个矩形都有高和宽,你可以在墙上最多挖k个洞使得 ...

  9. HDU-5273

    Dylans loves sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/ ...

  10. Python 什么是ORM?

    关系映射 性能比源生sql效率略差一些 操作性更简单,快捷 Django的orm和sqlalchamy 区别 sqlalchamy没有django的功能全,不支持双下划线的连表跨表操作 sqlalch ...