Bullcow

总时间限制: 12000ms 单个测试点时间限制: 1000ms 内存限制: 131072kB

【描述】

一年一度的展会要来临了,农民约翰想要把N(1 <= N <= 100,000)只奶牛和公牛安排在单独的一行中。 约翰发现最近公牛们非常好斗;假如两只公牛在这一行中靠的太近,他们就会吵架,以至于斗殴,破坏这和谐的环境。约翰非常的足智多谋,他计算出任何两只公牛之间至少要有K (0 <= K < N)只奶牛,这样才能避免斗殴。 约翰希望你帮助他计算一下有多少种安排方法,可避免任何斗殴的的发生。约翰认为每头公牛都是一样的,每头奶牛都是一样的。因而,只要在一些相同的位置上有不同种类的牛,那这就算两种不同的方法。

【输入】

第一行:两个用空格隔开的数:N和K

【输出】

第一行:一个单独的数,即约翰可以安排的方法数。考虑到这个数可能很大,你只要输出mod 5,000,011之后的结果就可以了。

【样例输入】

  1. 4 2
  2. 输入注释
  3. 约翰想要一排4头牛,但是任何两只公牛之间至少有两头奶牛

【样例输出】

  1. 6

【提示】

下面的就是约翰思考出可行的6种方案(C代表奶牛,B代表公牛)

CCCC

BCCC

CBCC

CCBC

CCCB

BCCB

【Solution】

  dp[i][0]表示位置i不放公牛,dp[i][1]表示位置i放公牛。

  当位置i不放公牛,位置i-1对其不产生影响,所以dp[i][0]可以从dp[i-1][0]和dp[i-1][1]转移过来

  当位置i放公牛,位置i-M一定不能放公牛,所以dp[i][1]可以从dp[i-M][0]转移过来

  还有一个难点在预处理上。在1~M中如果位置i放一头公牛那么就只能放那一头公牛,所以dp[i][1]=1。如果位置i不放牛,那么放公牛的方案就有i-1种,不放公牛的方案有1种,所以dp[i][0]=i-1+1=i

  总结一下,预处理时dp[i][1]=1,dp[i][0]=i;DP时dp[i][0]=dp[i-1][0]+dp[i-1][1],dp[i][1]=dp[i-M][0]

  AC代码:

  1. #include <cstdio>
  2. const int MOD=;
  3. int N,M;
  4. int dp[][];
  5. int main(){
  6. scanf("%d%d",&N,&M); dp[][]=;dp[][]=;
  7. for(int i=;i<=M;++i) dp[i][]=,dp[i][]=i;
  8. for(int i=M+;i<=N;++i){
  9. dp[i][]=dp[i-][]%MOD+dp[i-][]%MOD;
  10. dp[i][]=dp[i-M][]%MOD;
  11. }
  12. printf("%d",(dp[N][]+dp[N][])%MOD);
  13. return ;
  14. }

【OpenJudge9275】【Usaco2009 Feb】【递推】Bullcow的更多相关文章

  1. bzoj3398 [Usaco2009 Feb]Bullcow 牡牛和牝牛——递推 / 组合数

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3398 对于这种有点巧妙的递推还是总是没有思路... 设计一个状态 f[i] 表示第 i 位置 ...

  2. BZOJ3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛

    3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 30  Solved: 17[Sub ...

  3. BZOJ 3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛( dp )

    水题...忘了取模就没1A了.... --------------------------------------------------------------------------- #incl ...

  4. 3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛

    3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 243  Solved: 167[S ...

  5. BZOJ_3398_[Usaco2009 Feb]Bullcow 牡牛和牝牛_组合数学

    BZOJ_3398_[Usaco2009 Feb]Bullcow 牡牛和牝牛_组合数学 Description     约翰要带N(1≤N≤100000)只牛去参加集会里的展示活动,这些牛可以是牡牛, ...

  6. bzoj:3398 [Usaco2009 Feb]Bullcow 牡牛和牝牛

    Description     约翰要带N(1≤N≤100000)只牛去参加集会里的展示活动,这些牛可以是牡牛,也可以是牝牛.牛们要站成一排.但是牡牛是好斗的,为了避免牡牛闹出乱子,约翰决定任意两只牡 ...

  7. 刷题向》关于一道比较优秀的递推型DP(openjudge9275)(EASY+)

    先甩出传送门:http://noi.openjudge.cn/ch0206/9275/ 这道题比较经典, 最好不要看题解!!!!! 当然,如果你执意要看我也没有办法 首先,显然的我们可以用 f [ i ...

  8. 1578: [Usaco2009 Feb]Stock Market 股票市场

    1578: [Usaco2009 Feb]Stock Market 股票市场 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 414  Solved: 1 ...

  9. 【BZOJ-2476】战场的数目 矩阵乘法 + 递推

    2476: 战场的数目 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 58  Solved: 38[Submit][Status][Discuss] D ...

  10. 从一道NOI练习题说递推和递归

    一.递推: 所谓递推,简单理解就是推导数列的通项公式.先举一个简单的例子(另一个NOI练习题,但不是这次要解的问题): 楼梯有n(100 > n > 0)阶台阶,上楼时可以一步上1阶,也可 ...

随机推荐

  1. ubuntu 下安装 activate-power-mode

    转自网络 被朋友圈中的atom的activate-power-mode 震撼到了,于是想试试. 步骤如下 首先安装atom: sudo add-apt-repository ppa:webupd8te ...

  2. 2017-2018-1 20179205《Linux内核原理与设计》第十周作业

    <Linux内核原理与设计>第十周作业 教材17.19.20章学习及收获 1.在Linux以及所有unix系统中,设备被分为以下三种:块设备(blkdev)以块为单位寻址,通过块设备节点来 ...

  3. 细数雷军系成员,27家公司3家IPO

    自 2004 年至今,作为天使投资人和顺为基金创始合伙人,雷军共投了移动互联网.电子商务.互联网社区等领域内的 27 家创业公司,其中欢聚时代.猎豹移动.迅雷三家公司成功上市.小米科技虽然还未 IPO ...

  4. 【swupdate文档 二】许可证

    许可证 SWUpdate是免费软件.它的版权属于Stefano Babic和其他许多贡献代码的人(详情请参阅实际源代码和git提交信息). 您可以根据自由软件基金会发布的GNU通用公共许可证第2版的条 ...

  5. 【bzoj4518】征途

    懒得推式子了,总之是个斜率优化…… 先化一下题目要求的式子,再写一下dp方程,然后就是很自然的斜率优化了qwq #include<bits/stdc++.h> #define N 3005 ...

  6. git - 使用原理

    对git操作最大的功臣就是.git目录下的HEAD HEAD是什么 HEAD其实是一个类似于指针的东西,只不过这个指针的含义是指向当前的分支,当你再[ git checkout 分支 ] 的时候这个分 ...

  7. PIL处理图片信息

    最近遇到了图片处理的一些问题,python提供了一些库可以很方便地帮助我们解决这些问题,在这里把我这几天的学习总结一下. 一.提取图片的RGB值 1.非代码:如果只是为了提取某张图片或者某个像素点的R ...

  8. JavaScript跨域解决方法大全

    跨域的定义:JavaScript出于安全性考虑,同源策略机制对跨域访问做了限制.域仅仅是通过“URL的首部”字符串进行识别,“URL的首部”指window.location.protocol +win ...

  9. PHP设计模式二-------单例模式

    1.单例模式的介绍 意图:保证一个类仅有一个实例,并提供一个访问它的全局访问点: 主要解决:一个全局使用的类频繁地创建与销毁. 关键代码:构造函数是私有的,克隆方法也是私有的. 1.1 懒汉式//1 ...

  10. 重装系统备份MYSQL数据(整库备份)

    今天要重装Windows 8系统,但是我的Mysql里面数据太多,要备份成sql文件实在太麻烦,于是我听说可以直接拷贝数据文件夹,所以就试了,结果还成果了. 具体如下: 我安装的时候把数据文件夹就放在 ...