题目传送门

看题目可知这是一道差分约束的题目。

根据每种关系建边如下:

对于每种情况建边,然后跑一边SPFA。(最长路)

因为可能会有自环或环的情况,都不可能存在。

跑SPFA时记录入队次数,超过N弹出。

SPFA的dist起始值为1,ans=∑dist[i]

对于每个点做一遍SPFA会超时,所以将所有点放入队列中,所有点一起跑SPFA。

code:

/**************************************************************
    Problem: 2330
    User: yekehe
    Language: C++
    Result: Accepted
    Time:1280 ms
    Memory:43792 kb
****************************************************************/
 
#include <cstdio>
#include <cstdlib>
#include <cstring>
using namespace std;
 
int read()
{
    char c;while(c=getchar(),(c<''||c>'')&&c!='-');
    int x=,y=;c=='-'?y=-:x=c-'';
    while(c=getchar(),c>=''&&c<='')x=x*+c-'';
    return x*y;
}
 
struct list{
    int head[],nxt[],To[],W[],cnt;
    list(){
        memset(head,-,sizeof head);
        memset(nxt,-,sizeof nxt);
        cnt=;
    }
     
    void add(int x,int y,int c)
    {
        To[cnt]=y;
        W[cnt]=c;
        nxt[cnt]=head[x];
        head[x]=cnt;
        cnt++;
    }
}P;
 
int N,K;
int dist[],l[],flag[];
int into[],SF=;
 
void SPFA()
{
    int h=,t=;
    memset(into,,sizeof into);
        for(int i=;i<=N;i++)l[++t]=i,into[i]++;//入队++
        while(h<t){
            int front=l[++h];
            flag[front]=;
                for(int i=P.head[front];i!=-;i=P.nxt[i]){
                    if(dist[P.To[i]]<P.W[i]+dist[front]){//求最长路
                        dist[P.To[i]]=P.W[i]+dist[front];
                        if(!flag[P.To[i]]){
                            l[++t]=P.To[i],flag[P.To[i]]=;
                            into[P.To[i]]++;
                            if(into[P.To[i]]>N){SF=-;return ;}//判环
                        }
                    }
                }
        }
    return ;
}
 
int main()
{
    N=read();K=read();
    register int i;
        for(i=;i<=K;i++){
            int o=read(),x=read(),y=read();
                switch(o){
                    case :P.add(x,y,),P.add(y,x,);break;
                    case :P.add(x,y,);break;
                    case :P.add(y,x,);break;
                    case :P.add(y,x,);break;
                    case :P.add(x,y,);break;
                }
        }
        for(i=;i<=N;i++)dist[i]=;
    SPFA();
    if(SF<)return puts("-1"),;//有环
    long long ans=;
        for(i=;i<=N;i++)ans+=(long long)dist[i];
    printf("%lld",ans);
    return ;
}

这道题还有Tarjan缩点+DAG上DP的做法。

BZOJ2330_糖果_KEY的更多相关文章

  1. 原生js可爱糖果数字时间特效

    效果展示:http://hovertree.com/texiao/js/35/ 数字采用漂亮的糖果皮肤设计 效果图: 代码如下: <!DOCTYPE html> <html> ...

  2. UOJ #58 【WC2013】 糖果公园

    题目链接:糖果公园 听说这是一道树上莫队的入门题,于是我就去写了--顺便复习了一下莫队的各种姿势. 首先,我们要在树上使用莫队,那么就需要像序列一样给树分块.这个分块的过程就是王室联邦这道题(vfle ...

  3. [LeetCode] Candy 分糖果问题

    There are N children standing in a line. Each child is assigned a rating value. You are giving candi ...

  4. UOJ58 【WC2013】糖果公园

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  5. bzoj2330: [SCOI2011]糖果

    2330: [SCOI2011]糖果 Time Limit: 10 Sec Memory Limit: 128 MB Description 幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友 ...

  6. 糖果 bzoj 2330

    糖果(1s 128MB)candy [题目描述] 幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明 ...

  7. BZOJ 2330: [SCOI2011]糖果 [差分约束系统] 【学习笔记】

    2330: [SCOI2011]糖果 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 5395  Solved: 1750[Submit][Status ...

  8. Vijos P1196吃糖果游戏[组合游戏]

    描述 Matrix67和Shadow正在做一个小游戏. 桌子上放着两堆糖果,Matrix67和Shadow轮流对这些糖果进行操作.在每一次操作中,操作者需要吃掉其中一堆糖果,并且把另一堆糖果分成两堆( ...

  9. BZOJ 4548 小奇的糖果

    Description 有 \(N\) 个彩色糖果在平面上.小奇想在平面上取一条水平的线段,并拾起它上方或下方的所有糖果.求出最多能够拾起多少糖果,使得获得的糖果并不包含所有的颜色. Input 包含 ...

随机推荐

  1. OC基础数据类型-NSString

    1.字符串的初始化 //字符串的初始化 NSString *str = @"Hello world!"; NSString *str2 = [[NSString alloc] in ...

  2. ThinkPHP最新版本SQL注入漏洞

    如下controller即可触发SQL注入: code 区域 public function test() { $uname = I('get.uname'); $u = M('user')-> ...

  3. ImportError: libmysqlclient.so.20: cannot open shared object file: No such file or directory 解决办法

    >>> import MySQLdbTraceback (most recent call last):  File "<stdin>", line ...

  4. react开发中如何使用require.ensure加载es6风格的组件

    其实用的babel,在浏览器端就应该可以加载,之前少了个default: require.ensure([],(require) => { let A = require('./a.js').d ...

  5. 【模板】Splay总结

    rentenglong大佬写的splay的梳理使我受益颇丰,特此做出一定的总结. 数据结构 定义了一个struct结构体. 为了在splay操作下储存根节点,我们宏定义了root 为 tree[0]. ...

  6. 【[POI2015]WIL-Wilcze doły】

    第一篇题解确实会被讨论区里的数据hack掉,那么就随便水一个不会被hack掉的题解吧 首先我们尝试着发现这道题的一些结论,你就会发现答案是单调的不降的 这里的答案不降指的是选择每一个位置\(i\)作为 ...

  7. springmvc小结(上)

    1.springmvc的整体结构以及流程 ①.前端控制器:只需要在web.xml文件中配置即可 作用:接受请求,处理响应结果,转发器,中央处理器 ②.处理器映射器:根据请求的url找到相应的Handl ...

  8. ASP.NET SingalR 点对点聊天实现思路总结

    前一段时间写了一个简单的聊天室,是群聊的方式.博客地址:http://www.cnblogs.com/panzi/p/4980346.html.还有一种需求就是常见的尤其是培训机构的主页面,经常会有1 ...

  9. springboot之静态资源路径配置

    静态资源路径是指系统可以直接访问的路径,且路径下的所有文件均可被用户直接读取. 在Springboot中默认的静态资源路径有:classpath:/META-INF/resources/,classp ...

  10. 数据元&数据字典&元数据

    1. 数据元 data element(数据元素),单个数据单元,是数据的基本单位.参阅data field(数据字段). 2. 元数据 首先,我们举个例子来看看什么叫做“元”,在后现代主义文学中有一 ...