题目传送门

看题目可知这是一道差分约束的题目。

根据每种关系建边如下:

对于每种情况建边,然后跑一边SPFA。(最长路)

因为可能会有自环或环的情况,都不可能存在。

跑SPFA时记录入队次数,超过N弹出。

SPFA的dist起始值为1,ans=∑dist[i]

对于每个点做一遍SPFA会超时,所以将所有点放入队列中,所有点一起跑SPFA。

code:

/**************************************************************
    Problem: 2330
    User: yekehe
    Language: C++
    Result: Accepted
    Time:1280 ms
    Memory:43792 kb
****************************************************************/
 
#include <cstdio>
#include <cstdlib>
#include <cstring>
using namespace std;
 
int read()
{
    char c;while(c=getchar(),(c<''||c>'')&&c!='-');
    int x=,y=;c=='-'?y=-:x=c-'';
    while(c=getchar(),c>=''&&c<='')x=x*+c-'';
    return x*y;
}
 
struct list{
    int head[],nxt[],To[],W[],cnt;
    list(){
        memset(head,-,sizeof head);
        memset(nxt,-,sizeof nxt);
        cnt=;
    }
     
    void add(int x,int y,int c)
    {
        To[cnt]=y;
        W[cnt]=c;
        nxt[cnt]=head[x];
        head[x]=cnt;
        cnt++;
    }
}P;
 
int N,K;
int dist[],l[],flag[];
int into[],SF=;
 
void SPFA()
{
    int h=,t=;
    memset(into,,sizeof into);
        for(int i=;i<=N;i++)l[++t]=i,into[i]++;//入队++
        while(h<t){
            int front=l[++h];
            flag[front]=;
                for(int i=P.head[front];i!=-;i=P.nxt[i]){
                    if(dist[P.To[i]]<P.W[i]+dist[front]){//求最长路
                        dist[P.To[i]]=P.W[i]+dist[front];
                        if(!flag[P.To[i]]){
                            l[++t]=P.To[i],flag[P.To[i]]=;
                            into[P.To[i]]++;
                            if(into[P.To[i]]>N){SF=-;return ;}//判环
                        }
                    }
                }
        }
    return ;
}
 
int main()
{
    N=read();K=read();
    register int i;
        for(i=;i<=K;i++){
            int o=read(),x=read(),y=read();
                switch(o){
                    case :P.add(x,y,),P.add(y,x,);break;
                    case :P.add(x,y,);break;
                    case :P.add(y,x,);break;
                    case :P.add(y,x,);break;
                    case :P.add(x,y,);break;
                }
        }
        for(i=;i<=N;i++)dist[i]=;
    SPFA();
    if(SF<)return puts("-1"),;//有环
    long long ans=;
        for(i=;i<=N;i++)ans+=(long long)dist[i];
    printf("%lld",ans);
    return ;
}

这道题还有Tarjan缩点+DAG上DP的做法。

BZOJ2330_糖果_KEY的更多相关文章

  1. 原生js可爱糖果数字时间特效

    效果展示:http://hovertree.com/texiao/js/35/ 数字采用漂亮的糖果皮肤设计 效果图: 代码如下: <!DOCTYPE html> <html> ...

  2. UOJ #58 【WC2013】 糖果公园

    题目链接:糖果公园 听说这是一道树上莫队的入门题,于是我就去写了--顺便复习了一下莫队的各种姿势. 首先,我们要在树上使用莫队,那么就需要像序列一样给树分块.这个分块的过程就是王室联邦这道题(vfle ...

  3. [LeetCode] Candy 分糖果问题

    There are N children standing in a line. Each child is assigned a rating value. You are giving candi ...

  4. UOJ58 【WC2013】糖果公园

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  5. bzoj2330: [SCOI2011]糖果

    2330: [SCOI2011]糖果 Time Limit: 10 Sec Memory Limit: 128 MB Description 幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友 ...

  6. 糖果 bzoj 2330

    糖果(1s 128MB)candy [题目描述] 幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明 ...

  7. BZOJ 2330: [SCOI2011]糖果 [差分约束系统] 【学习笔记】

    2330: [SCOI2011]糖果 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 5395  Solved: 1750[Submit][Status ...

  8. Vijos P1196吃糖果游戏[组合游戏]

    描述 Matrix67和Shadow正在做一个小游戏. 桌子上放着两堆糖果,Matrix67和Shadow轮流对这些糖果进行操作.在每一次操作中,操作者需要吃掉其中一堆糖果,并且把另一堆糖果分成两堆( ...

  9. BZOJ 4548 小奇的糖果

    Description 有 \(N\) 个彩色糖果在平面上.小奇想在平面上取一条水平的线段,并拾起它上方或下方的所有糖果.求出最多能够拾起多少糖果,使得获得的糖果并不包含所有的颜色. Input 包含 ...

随机推荐

  1. windows 安装redis并注册服务

        windows下载地址 https://github.com/MSOpenTech/redis/releases     启动:redis-server redis.windows.conf ...

  2. [原]零基础学习在Android进行SDL开发后记

    本着学习交流记录的目的编写了这个系列文章,主要用来记录如何从零开始学习SDL开发的过程,在这个过程中遇到了很多问题,差点就放弃了.首先是SDL的Android移植的时候遇到了比较坑的是SDL移植到An ...

  3. 入门学习webpack笔记

    注意事项: 1.预热知识:前端模块化.commonJS最好提前了解.commonJS语法最好熟悉. 2.commonJS中,module表示当前模块,module.exports(或者exports) ...

  4. dom4j.jar有什么作用?

    om4j是一个Java的XML API,类似于jdom,用来读写XML文件的.dom4j是一个非常非常优秀的Java XML API,具有性能优异.功能强大和极端易用使用的特点,同时它也是一个开放源代 ...

  5. mapper.xml中动态sql抽取重复项

    mabatis重点是通过标签对sql灵活的组织,通过配置的方式完成输入 输出映射. 1.对mapper.xml中重复的sql抽取统一维护,以及foreach使用 UserMapperCustom.xm ...

  6. SSM框架之多数据源配置

    多数据源的应用场景:主要是数据库拆分后,怎样让多个数据库结合起来来达到业务需求. SSM框架(Spring+SpringMVC+MyBatis(MyBatis-Plus))是目前最常用的,此次仍然是m ...

  7. HDU 1286 找新朋友 (欧拉公式或者标记法(其实就是欧拉公式的思想))

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1286 找新朋友 Time Limit: 2000/1000 MS (Java/Others)    M ...

  8. 【Nginx】使用Nginx作为Http代理的配置文件

    请看配置文件中的注释~ #user nobody; worker_processes 1; #pid logs/nginx.pid; events { worker_connections 1024; ...

  9. ARM MDK 编译产生:RO、RW和ZI DATA说明

    1.比如编译一个工程文件,产生如下提示信息: Program Size: Code=18938 RO-data=622 RW-data=124 ZI-data=7724 RO段.RW段和ZI段 要了解 ...

  10. iOS视频播放(AVFoundation)

    iOS视频播放(AVFoundation) 关于iOS平台的音视频处理,苹果官方提供了OC和swift接口的AVFoundation框架,可以进行各种音频播放和剪辑,底层实现使用了GPU加速,编解码效 ...