网站行为跟踪 Website Activity Tracking Log Aggregation 日志聚合 In comparison to log-centric systems like Scribe or Flume
网站行为跟踪 Website Activity Tracking
访客信息处理
Log Aggregation 日志聚合
Apache Kafka http://kafka.apache.org/uses
In comparison to log-centric systems like Scribe or Flume Scribe or Flume 是以日志处理为中心
Use cases
Here is a description of a few of the popular use cases for Apache Kafka®. For an overview of a number of these areas in action, see this blog post.
Messaging
Kafka works well as a replacement for a more traditional message broker. Message brokers are used for a variety of reasons (to decouple processing from data producers, to buffer unprocessed messages, etc). In comparison to most messaging systems Kafka has better throughput, built-in partitioning, replication, and fault-tolerance which makes it a good solution for large scale message processing applications.
In our experience messaging uses are often comparatively low-throughput, but may require low end-to-end latency and often depend on the strong durability guarantees Kafka provides.
In this domain Kafka is comparable to traditional messaging systems such as ActiveMQ or RabbitMQ.
Website Activity Tracking
The original use case for Kafka was to be able to rebuild a user activity tracking pipeline as a set of real-time publish-subscribe feeds. This means site activity (page views, searches, or other actions users may take) is published to central topics with one topic per activity type. These feeds are available for subscription for a range of use cases including real-time processing, real-time monitoring, and loading into Hadoop or offline data warehousing systems for offline processing and reporting.
Activity tracking is often very high volume as many activity messages are generated for each user page view.
Metrics
Kafka is often used for operational monitoring data. This involves aggregating statistics from distributed applications to produce centralized feeds of operational data.
Log Aggregation
Many people use Kafka as a replacement for a log aggregation solution. Log aggregation typically collects physical log files off servers and puts them in a central place (a file server or HDFS perhaps) for processing. Kafka abstracts away the details of files and gives a cleaner abstraction of log or event data as a stream of messages. This allows for lower-latency processing and easier support for multiple data sources and distributed data consumption. In comparison to log-centric systems like Scribe or Flume, Kafka offers equally good performance, stronger durability guarantees due to replication, and much lower end-to-end latency.
Stream Processing
Many users of Kafka process data in processing pipelines consisting of multiple stages, where raw input data is consumed from Kafka topics and then aggregated, enriched, or otherwise transformed into new topics for further consumption or follow-up processing. For example, a processing pipeline for recommending news articles might crawl article content from RSS feeds and publish it to an "articles" topic; further processing might normalize or deduplicate this content and published the cleansed article content to a new topic; a final processing stage might attempt to recommend this content to users. Such processing pipelines create graphs of real-time data flows based on the individual topics. Starting in 0.10.0.0, a light-weight but powerful stream processing library called Kafka Streams is available in Apache Kafka to perform such data processing as described above. Apart from Kafka Streams, alternative open source stream processing tools include Apache Storm and Apache Samza.
Event Sourcing
Event sourcing is a style of application design where state changes are logged as a time-ordered sequence of records. Kafka's support for very large stored log data makes it an excellent backend for an application built in this style.
Commit Log
Kafka can serve as a kind of external commit-log for a distributed system. The log helps replicate data between nodes and acts as a re-syncing mechanism for failed nodes to restore their data. The log compaction feature in Kafka helps support this usage. In this usage Kafka is similar to Apache BookKeeper project.
网站行为跟踪 Website Activity Tracking Log Aggregation 日志聚合 In comparison to log-centric systems like Scribe or Flume的更多相关文章
- 1.2 Use Cases中 Website Activity Tracking官网剖析(博主推荐)
不多说,直接上干货! 一切来源于官网 http://kafka.apache.org/documentation/ Website Activity Tracking 网站活动追踪 The origi ...
- 1.2 Use Cases中 Log Aggregation官网剖析(博主推荐)
不多说,直接上干货! 一切来源于官网 http://kafka.apache.org/documentation/ Log Aggregation 日志聚合 Many people use Kafka ...
- /VAR/LOG/各个日志文件分析
/VAR/LOG/各个日志文件分析 author:headsen chen 2017-10-24 18:00:24 部分内容取自网上搜索,部分内容为自己整理的,特此声明. 1. /v ...
- 超酷的实时颜色数据跟踪javascript类库 - Tracking.js
来源:GBin1.com 今天介绍这款超棒的Javascript类库是 - Tracking.js,它能够独立不依赖第三方类库帮助开发人员动态跟踪摄像头输出相关数据. 这些数据包括了颜色或者是人, 这 ...
- SQL Server 更改跟踪(Chang Tracking)监控表数据
一.本文所涉及的内容(Contents) 本文所涉及的内容(Contents) 背景(Contexts) 主要区别与对比(Compare) 实现监控表数据步骤(Process) 参考文献(Refere ...
- 【转载,备忘】SQL Server 更改跟踪(Chang Tracking)监控表数据
一.本文所涉及的内容(Contents) 本文所涉及的内容(Contents) 背景(Contexts) 主要区别与对比(Compare) 实现监控表数据步骤(Process) 参考文献(Refere ...
- /var/log各种日志
文章为装载 1)/var/log/secure:记录登录系统存取数据的文件;例如:pop3,ssh,telnet,ftp等都会记录在此. 2)/ar/log/btmp:记录登录这的信息记录,被编码过, ...
- logback的使用和logback.xml详解,在Spring项目中使用log打印日志
logback的使用和logback.xml详解 一.logback的介绍 Logback是由log4j创始人设计的另一个开源日志组件,官方网站: http://logback.qos.ch.它当前分 ...
- SharePoint ULS Log Viewer 日志查看器
SharePoint ULS Log Viewer 日志查看器 项目描写叙述 这是一个Windows应用程序,更加轻松方便查看SharePoint ULS日志文件.支持筛选和简单的视图. 信息 这是一 ...
随机推荐
- HTTPSConnectionPool(host='xxxxx', port=443): Max retries exceeded with url:xxxxxxxx (Caused by NewConnectionError('<urllib3.connect,Max retries exceeded with ,(Caused by NewConnectionError
HTTPSConnectionPool(host='f6ws-sha8re-o88k.s3.ama66zaws.com', port=443): Max retries exceeded with u ...
- hdoj 1288 Hat's Tea
Hat's Tea Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total S ...
- iOS开发值NSUserDefaults类概述
NSUserDefaults类概述 NSUserDefaults类为和默认的系统进行交互提供了一个系统编程接口.默认的系统允许一个应用来定制它的行为以适应用户的喜好.例如,你可以允许用户去决定你的应用 ...
- Makefile 13——理解make的解析行为
make是以从上到下的顺序读入Makefile中的内容的.然而,处理Makefile中的语句却并非完全从上到下. 大体上,make处理一个Makefile分为两个阶段.第一个阶段包含: 1.make读 ...
- JdbcTemplate中的exectue和queryForList方法的性能对比
@Autowired JdbcTemplate jdbcParam; pstm = jdbcParam.getDataSource() ...
- 如何使用UltraISO将制作的ios文件挂载到虚拟机上面
选中要挂载的文件例如图中蓝色的部分移动到上面,然后点击文件中的保存按钮就可以了. 接下来设置虚拟机上的red hat6.3 记住一定要把红色部分选中,才能在虚拟机上看到 然后点击光盘就可以看到挂载的内 ...
- Iptables详解+实例
Iptabels是与Linux内核集成的包过滤防火墙系统,几乎所有的linux发行版本都会包含Iptables的功能.如果 Linux 系统连接到因特网或 LAN.服务器或连接 LAN 和因特网的代理 ...
- 多线程中wait和notify的理解与使用
1.对于wait()和notify()的理解 对于wait()和notify()的理解,还是要从jdk官方文档中开始,在Object类方法中有: void notify() Wakes up a s ...
- C++ 抽象类一(多继承与赋值兼容性原则)
//多继承与赋值兼容性原则 #include<iostream> using namespace std; class Point{ public: Point(){ a = ; b = ...
- Docker:通过Git部署
这是我翻译的国外博客,如需转载请注明出处和原文链接 我一直听说Docker是个很棒的新事物,但是我一直提不起兴趣,直到我遇到一个切实的问题: 如果通过Docker来部署 Scout ,这么做会轻松一些 ...