这个题目是Segment-Tree-beats的论文的第一题。

首先我们考虑下这个问题的不同之处在于,有一个区间对x取max的操作。

那么如何维护这个操作呢?

就是对于线段树的区间,维护一个最大值标记,最大值出现次数,以及严格次大值。

接下来考虑处理操作。

首先如果x>maxv[o]证明已经是无所谓的,所以应该直接放弃。

如果v处于semx[o]<x<maxv[o],证明只有最大值需要被修改。

其他的情况就继续向下递进就可以了。

那么我们证明一下为什么这么做复杂度是对的。

首先,如同论文中所说的,对于每个maxv可以看作是一个标记,把相同的maxv合并到第一个点,

可以发现semx的含义就是子树中最大的maxv。(因为最大值已经被缩到了这个点上)

每次暴力进入这些节点的时候,实际上就是将标记进行合并。

(也就是文章中所说的标记回收的理论)

这个题的难点就是为什么我这么暴力的回收依然可以是一个log的。

在每一次操作后会产生一类新的标记。

那么每次标记回收实际上就是有一类标记的权值-=1

#include<bits/stdc++.h>
typedef long long ll;
using namespace std;
const int N=1e6+;
int a[N],n,m;
struct Segment_Tree{
#define lson (o<<1)
#define rson (o<<1|1)
int maxv[N<<],cntv[N<<],semx[N<<];
ll sumv[N<<];
inline void pushup(int o){
sumv[o]=sumv[lson]+sumv[rson];
maxv[o]=max(maxv[lson],maxv[rson]);
semx[o]=max(semx[lson],semx[rson]);cntv[o]=;
if(maxv[lson]!=maxv[rson])semx[o]=max(semx[o],min(maxv[lson],maxv[rson]));
if(maxv[o]==maxv[lson])cntv[o]+=cntv[lson];
if(maxv[o]==maxv[rson])cntv[o]+=cntv[rson];
}
inline void puttag(int o,int v){
if(v>=maxv[o])return;
sumv[o]+=1LL*(v-maxv[o])*cntv[o];maxv[o]=v;
}
inline void pushdown(int o){puttag(lson,maxv[o]);puttag(rson,maxv[o]);}
inline void build(int o,int l,int r){
if(l==r){
sumv[o]=maxv[o]=a[l];cntv[o]=;semx[o]=-;
return;
}
int mid=(l+r)>>;
build(lson,l,mid);build(rson,mid+,r);
pushup(o);
}
inline void optmax(int o,int l,int r,int ql,int qr,int v){
if(v>=maxv[o])return;
if(ql<=l&&r<=qr&&v>semx[o]){puttag(o,v);return;}
int mid=(l+r)>>;pushdown(o);
if(ql<=mid)optmax(lson,l,mid,ql,qr,v);
if(qr>mid)optmax(rson,mid+,r,ql,qr,v);
pushup(o);
}
inline ll querysum(int o,int l,int r,int ql,int qr){
if(ql<=l&&r<=qr)return sumv[o];
int mid=(l+r)>>;pushdown(o);ll ans=;
if(ql<=mid)ans+=querysum(lson,l,mid,ql,qr);
if(qr>mid)ans+=querysum(rson,mid+,r,ql,qr);
return ans;
}
inline int querymax(int o,int l,int r,int ql,int qr){
if(ql<=l&&r<=qr)return maxv[o];
pushdown(o);int mid=(l+r)>>,ans=-;
if(ql<=mid)ans=max(ans,querymax(lson,l,mid,ql,qr));
if(qr>mid)ans=max(ans,querymax(rson,mid+,r,ql,qr));
return ans;
}
}sgt;
inline int read(){
int f=,x=;char ch;
do{ch=getchar();if(ch=='-')f=-;}while(ch<''||ch>'');
do{x=x*+ch-'';ch=getchar();}while(ch>=''&&ch<='');
return f*x;
}
int main(){
int T=read();
while(T--){
n=read();m=read();
for(int i=;i<=n;i++)a[i]=read();
sgt.build(,,n);
while(m--){
int opt=read(),l=read(),r=read();
if(opt==){
int v=read();
sgt.optmax(,,n,l,r,v);
}
if(opt==)printf("%d\n",sgt.querymax(,,n,l,r));
if(opt==)printf("%lld\n",sgt.querysum(,,n,l,r));
}
}
}

【HDU5306】Gorgeous Sequence的更多相关文章

  1. 【hdu5306】 Gorgeous Sequence

    http://acm.hdu.edu.cn/showproblem.php?pid=5306 (题目链接) 题意 区间取$min$操作,区间求和操作,区间求最值操作. Solution 乱搞一通竟然A ...

  2. 【hdu5306】Gorgeous Sequence 线段树区间最值操作

    题目描述 给你一个序列,支持三种操作: $0\ x\ y\ t$ :将 $[x,y]$ 内大于 $t$ 的数变为 $t$ :$1\ x\ y$ :求 $[x,y]$ 内所有数的最大值:$2\ x\ y ...

  3. 【HDU5306】【DTOJ2481】Gorgeous Sequence【线段树】

    题目大意:给你一个序列a,你有三个操作,0: x y t将a[x,y]和t取min:1:x y求a[x,y]的最大值:2:x y求a[x,y]的sum 题解:首先很明显就是线段树裸题,那么考虑如何维护 ...

  4. 【arc071f】Infinite Sequence(动态规划)

    [arc071f]Infinite Sequence(动态规划) 题面 atcoder 洛谷 题解 不难发现如果两个不为\(1\)的数连在一起,那么后面所有数都必须相等. 设\(f[i]\)表示\([ ...

  5. 【arc074e】RGB Sequence(动态规划)

    [arc074e]RGB Sequence(动态规划) 题面 atcoder 洛谷 翻译见洛谷 题解 直接考虑暴力\(dp\),设\(f[i][j][k][l]\)表示当前考虑到第\(i\)位,最后一 ...

  6. 【BZOJ1367】[Baltic2004]sequence 左偏树

    [BZOJ1367][Baltic2004]sequence Description Input Output 一个整数R Sample Input 7 9 4 8 20 14 15 18 Sampl ...

  7. 【BZOJ3043】IncDec Sequence 乱搞

    [BZOJ3043]IncDec Sequence Description 给定一个长度为n的数列{a1,a2...an},每次可以选择一个区间[l,r],使这个区间内的数都加一或者都减一.问至少需要 ...

  8. 【POJ2778】DNA Sequence(AC自动机,DP)

    题意: 生物课上我们学到,DNA序列中只有A, C, T和G四种片段. 经科学发现,DNA序列中,包含某些片段会产生不好的基因,如片段"ATC"是不好片段,则"AGATC ...

  9. 【leetcode】 Permutation Sequence (middle)

    The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

随机推荐

  1. 【bzoj2699】更新 dp

    题目描述 对于一个数列A[1..N],一种寻找最大值的方法是:依次枚举A[2]到A[N],如果A[i]比当前的A[1]值要大,那么就令A[1]=A[i],最后A[1]为所求最大值.假设所有数都在范围[ ...

  2. 【bzoj1231】[Usaco2008 Nov]mixup2 混乱的奶牛 状态压缩dp

    题目描述 混乱的奶牛[Don Piele, 2007]Farmer John的N(4 <= N <= 16)头奶牛中的每一头都有一个唯一的编号S_i (1 <= S_i <= ...

  3. Urllib--爬虫

    1.简单爬虫 from urllib import request def f(url): print('GET: %s' % url) resp = request.urlopen(url) #赋给 ...

  4. [CF622F]The Sum of the k-th Powers

    题目大意:给你$n,k(n\leqslant10^9,k\leqslant10^6)$,求:$$\sum\limits_{i=1}^ni^k\pmod{10^9+7}$$ 题解:可以猜测是一个$k+1 ...

  5. BZOJ5339:[TJOI2018]教科书般的亵渎——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=5339 https://www.luogu.org/problemnew/show/P4593 小豆 ...

  6. BZOJ1040:[ZJOI2008]骑士——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=1040 题面大意:n个人有一个价值和一个最恨的人,现在组出一个队伍使得价值最大且没有仇恨关系. ——— ...

  7. [bzoj] 1588 营业额统计 || Splay板子题

    原题 给出一个n个数的数列ai ,对于第i个元素ai定义\(fi=min(|ai-aj|) (1<=j<i)\),f1=a1,求\(/sumfi\) Splay板子题. Splay讲解:h ...

  8. HDU.2503 a/b + c/d (分式化简)

    a/b + c/d Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

  9. ContestHunter暑假欢乐赛 SRM 08

    rating再次跳水www A题贴HR题解!HR智商流选手太强啦!CYC也好强%%%发现了len>10大概率是Y B题 dp+bit优化,据LLQ大爷说splay也可以优化,都好强啊.. C题跑 ...

  10. NOIP2009 codevs1173 洛谷P1073 最优贸易

    Description: 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分为双向通 ...