ACdream 1157 Segments CDQ分治
题目链接:https://vjudge.net/problem/ACdream-1157
题意:
Problem Description
由3钟类型操作:
1)D L R(1 <= L <= R <= 1000000000) 增加一条线段[L,R]
2)C i (1-base) 删除第i条增加的线段,保证每条插入线段最多插入一次,且这次删除操作一定合法
3) Q L R(1 <= L <= R <= 1000000000) 查询目前存在的线段中有多少条线段完全包含[L,R]这个线段,线段X被线段Y完全包含即LY <= LX
<= RX <= RY)
给出N,接下来N行,每行是3种类型之一
Input
多组数据,每组数据N
接下来N行,每行是三种操作之一(1 <= N <= 10^5)
Output
Sample Input
6
D 1 100
D 3 8
D 4 10
Q 3 8
C 1
Q 3 8
Sample Output
2
1
Hint
注意,删除第i条增加的线段,不是说第i行,而是说第i次增加。
比如
D 1 10
Q 1 10
D 2 3
D 3 4
Q 5 6
D 5 6
C 2是删除D 2 3
C 4是删除D 5 6
解法:CDQ分治,将删除操作看作插入一条数量为-1的线段,查询操作看作插入一条数量为0的线段,用cnt[i]表示第i次插入的线段被之前插入的线段包含的次数,按操作顺序进行分治,每次统计[l,mid+1]中有多少元素j满足j.y>=i.y,j.x<=i.x,其中mid+1<=i<=r,这个过程可以通过对两个区间都以x为第一关键字降序排,以y为第二关键字升序排,对于[mid+1,r]中的每个i(i为数量为0的元素,即为查询),将[l,mid]中所有满足j.y>=i.y的j以j.x为下标,cnt[j]为键值插入到树状数组中,那么每次只需统计树状数组中下标小于等于i.x的元素键值之和累加到cnt[i]中即可。
#include <bits/stdc++.h>
using namespace std;
const int maxn = 2e5+10;
int n, h[maxn], tot;
struct node{
int x,y,cnt,id,ans;
bool operator<(const node &rhs) const{
if(y!=rhs.y)return y>rhs.y;
return x<rhs.x;
}
}p[maxn],q[maxn];
bool cmp(node a, node b){
return a.id<b.id;
}
struct BIT{
int b[maxn];
void init(){
memset(b, 0, sizeof(b));
}
inline int lowbit(int x){
return (x&(-x));
}
void add(int x, int v){
while(x<=tot){
b[x]+=v;
x+=lowbit(x);
}
}
int query(int x){
int ret = 0;
while(x){
ret += b[x];
x -= lowbit(x);
}
return ret;
}
}bit;
void CDQ(int l, int r){
if(l == r) return;
int mid = (l+r)/2;
CDQ(l,mid);
CDQ(mid+1,r);
sort(p+l,p+mid+1);
sort(p+mid+1,p+r+1);
int j=l;
for(int i=mid+1; i<=r; i++){
for(;j<=mid&&p[j].y>=p[i].y;j++) bit.add(p[j].x, p[j].cnt);
if(!p[i].cnt) p[i].ans+=bit.query(p[i].x);
}
for(int i=l; i<j; i++) bit.add(p[i].x, -p[i].cnt);
merge(p+l,p+mid+1,p+mid+1,p+r+1,q);
for(int i=0; i<r-l+1; i++) p[l+i]=q[i];
}
int res, l[maxn], r[maxn]; int main()
{
while(~scanf("%d", &n))
{
bit.init();
tot=0,res=1;
for(int i=1; i<=n; i++){
p[i].id = i, p[i].ans = 0;
char op[3];
scanf("%s", op);
if(op[0] == 'D'){
scanf("%d%d",&p[i].x,&p[i].y);
p[i].cnt=1;
l[res]=p[i].x,r[res++]=p[i].y;
h[++tot]=p[i].x,h[++tot]=p[i].y;
}
else if(op[0]=='Q'){
scanf("%d%d",&p[i].x,&p[i].y);
p[i].cnt=0;
h[++tot]=p[i].x,h[++tot]=p[i].y;
}
else{
int temp;
scanf("%d", &temp);
p[i].x=l[temp],p[i].y=r[temp];
p[i].cnt=-1;
}
}
sort(h+1,h+tot+1);
tot = unique(h+1,h+tot+1)-h-1;
for(int i=1; i<=n; i++){
p[i].x=lower_bound(h+1,h+tot+1,p[i].x)-h;
p[i].y=lower_bound(h+1,h+tot+1,p[i].y)-h;
}
CDQ(1, n);
sort(p+1,p+n+1,cmp);
for(int i=1; i<=n; i++){
if(!p[i].cnt) printf("%d\n", p[i].ans);
}
}
return 0;
}
ACdream 1157 Segments CDQ分治的更多相关文章
- 【ACdream】1157 Segments cdq分治
Segments Problem Description 由3钟类型操作:1)D L R(1 <= L <= R <= 1000000000) 增加一条线段[L,R]2)C i ...
- ACdream 1157 (cdq分治)
题目链接 Segments Time Limit: 4000/2000MS (Java/Others)Memory Limit: 20000/10000KB (Java/Others) Problem ...
- ACdream 1157 Segments(CDQ分治)
题目链接:http://acdream.info/problem?pid=1157 Problem Description 由3钟类型操作:1)D L R(1 <= L <= R < ...
- ACdream 1157 Segments
Segments Time Limit: 2000ms Memory Limit: 10000KB This problem will be judged on ACdream. Original I ...
- ACdream1157 Segments(CDQ分治 + 线段树)
题目这么说的: 进行如下3种类型操作:1)D L R(1 <= L <= R <= 1000000000) 增加一条线段[L,R]2)C i (1-base) 删除第i条增加的线段, ...
- 【教程】简易CDQ分治教程&学习笔记
前言 辣鸡蒟蒻__stdcall终于会CDQ分治啦! CDQ分治是我们处理各类问题的重要武器.它的优势在于可以顶替复杂的高级数据结构,而且常数比较小:缺点在于必须离线操作. CDQ分治的基 ...
- BZOJ 2683 简单题 ——CDQ分治
[题目分析] 感觉CDQ分治和整体二分有着很本质的区别. 为什么还有许多人把他们放在一起,也许是因为代码很像吧. CDQ分治最重要的是加入了时间对答案的影响,x,y,t三个条件. 排序解决了x ,分治 ...
- HDU5618 & CDQ分治
Description: 三维数点 Solution: 第一道cdq分治...感觉还是很显然的虽然题目不能再傻逼了... Code: /*=============================== ...
- 初识CDQ分治
[BZOJ 1176:单点修改,查询子矩阵和]: 1176: [Balkan2007]Mokia Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 200 ...
随机推荐
- 关于__name__=='__main__
if __name__=='__main__' : 为了区分你是主动执行这个脚本,还是从别的地方把它当做一个模块去调用. 如果是主动执行,则执行.如果是调用的,则不执行主体. 里面存放的可能是一些测 ...
- [洛谷P4980]【模板】Polya定理
题目大意:给一个$n$个点的环染色,有$n$中颜色,问有多少种涂色方案是的旋转后本质不同 题解:$burnside$引理:$ans=\dfrac1{|G|}\sum\limits_{g\in G}A_ ...
- [洛谷P1714]切蛋糕
题目大意:给你n个整数,求出其中长度不超过m的最大字段和. 题解:单调队列维护前缀和最小值,然后用当前值减去当前有效最小值即可 C++ Code: #include<cstdio> usi ...
- NVIDIA TensorRT 让您的人工智能更快!
NVIDIA TensorRT 让您的人工智能更快! 英伟达TensorRT™是一种高性能深度学习推理优化器和运行时提供低延迟和高通量的深度学习推理的应用程序.使用TensorRT,您可以优化神经网络 ...
- 51NOD 1934:受限制的排列——题解
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1934 听说会笛卡尔树的人这题都秒了啊…… 参考:https://blog ...
- 常见的shell命令总结
1.查看一个程序是否运行 ps –ef|grep tomcat 查看所有有关tomcat的进程 2.终止线程 kill -9 2222 3.查看文件,包含隐藏文件 ls -al 4.当前 ...
- 学习web安全之--初识安全
随笔:随着互联网行业的飞速发展,互联网行业可谓日新月异,然而在繁华的背后,大多的互联网公司对于网络安全还是处于无重视,不作为的阶段,而作为一个程序员,如果也对信息安全视而不见的话,那将是这个公司的噩梦 ...
- 【DP】【P1586】四方定理
传送门 Description Input 第一行为一个整数T代表数据组数,之后T行每行一个数n代表要被分解的数 Output 对于每个n输出一行,为方案个数 Sample Input Sample ...
- PowerDesigner逆向生成
人越长大话越少,我们不再说今天受了委屈,不再说谁谁谁不理我了我好难过,不再分享生活中的琐事. 我知道人和人之间没法互相理解,大家都很忙,针也没扎在别人身上. 所以把那些还没说出口的话消化在每一步走过的 ...
- How to Disable System Integrity Protection (rootless) in OS X El Capitan
mac在10.11之后增加了一个功能,号称"System Integrity Protection, often called rootless",有了这个功能,以下目录的东西都不 ...