洛谷2943 [USACO09MAR]清理Cleaning Up——转变枚举内容的dp
题目:https://www.luogu.org/problemnew/show/P2943
一下想到n^2。然后不会了。
看过TJ之后似乎有了新的认识。
n^2的冗余部分在于当后面那部分的种类数一样时,只需用最前面的dp转移过来即可。
所以如果枚举的是后面那部分的种类数,对于每个种类数记录一下最前面的dp,也许会好一些。
但是种类也有n种,怎么办?
考虑是否需要枚举全部从1~n。
k*k是一个比较大的数。发现一定有一种情况使得时间花费为n(即全部单个选),所以只需要枚举k*k<=n的种类数即可。
结果知道了思路却还是写不出来。
关键在于怎么在新入一个值之后维护“后面那部分有 j 个种类”。
1)树状数组。就用HH的项链那样的思想。
结果发现不能很快找到新的对应地方。
2)(参考TJ)记录pre,当pre[ i ]<=zy[ j ]的时候zy[ j+1 ]=zy[ j ]。并且倒序什么的。
发现不对。因为转移给 j+1 后不一定是最靠前的位置。
3)(再次参考TJ)记录pre和nxt,当pre[ i ]<=zy[ j ]的时候将zy[ j ]++到合适的第一个位置。
结果还是不行。因为 j 在前面的一些时候其实是不满 j 个种类的。贸然++会使位置偏大。
那记录一个cnt表示现在已经出现了几个种类,按这个枚举 j 呢?结果还是不行。
因为就算上界改为现在出现了几个种类,在最开始的时候一些 j 其实还是不满 j 个种类。
4)(再再次参考TJ)记录cnt[ j ],当 cnt[ j ] > j 的时候进入while。
当不行的时候就是要多记录一些东西才行呢……
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
const int N=4e5+,M=;
int n,m,a[N],dp[N],pre[N],nxt[N],pos[N],zy[N],cnt[N];
int rdn()
{
int ret=;char ch=getchar();
while(ch>''||ch<'')ch=getchar();
while(ch>=''&&ch<='')(ret*=)+=ch-'',ch=getchar();
return ret;
}
int main()
{
n=rdn();m=rdn();
memset(dp,,sizeof dp);dp[]=;
for(int i=;i<=n;i++)
{
a[i]=rdn();pre[i]=pos[a[i]];nxt[pre[i]]=i;pos[a[i]]=i;nxt[i]=n+;
}
for(int i=;i<=n;i++)
for(int j=;j*j<=n;j++)
{
if(pre[i]<=zy[j])cnt[j]++;//不要cnt[zy[j]]
if(cnt[j]>j)
{
cnt[j]--;while(nxt[zy[j]+]<=i)zy[j]++;zy[j]++;
}
dp[i]=min(dp[i],dp[zy[j]]+j*j);
}
printf("%d",dp[n]);
return ;
}
洛谷2943 [USACO09MAR]清理Cleaning Up——转变枚举内容的dp的更多相关文章
- luogu 2943 [USACO09MAR]清理Cleaning Up 动态规划
非常巧妙的动态规划. 你会发现每一个区间地颜色种类不能超过 $\sqrt n$, 所以可以直接枚举区间颜色种类. 令这个为 $pos[j],$ 然后考虑如何去更新这个东西就行了. Code: #inc ...
- 洛谷 P4284 [SHOI2014]概率充电器 概率与期望+换根DP
洛谷 P4284 [SHOI2014]概率充电器 概率与期望+换根DP 题目描述 著名的电子产品品牌\(SHOI\) 刚刚发布了引领世界潮流的下一代电子产品-- 概率充电器: "采用全新纳米 ...
- 洛谷P2947 [USACO09MAR]仰望Look Up
P2947 [USACO09MAR]仰望Look Up 74通过 122提交 题目提供者洛谷OnlineJudge 标签USACO2009云端 难度普及/提高- 时空限制1s / 128MB 提交 ...
- 洛谷AT2046 Namori(思维,基环树,树形DP)
洛谷题目传送门 神仙思维题还是要写点东西才好. 树 每次操作把相邻且同色的点反色,直接这样思考会发现状态有很强的后效性,没办法考虑转移. 因为树是二分图,所以我们转化模型:在树的奇数层的所有点上都有一 ...
- 洛谷4859 BZOJ3622 已经没什么好害怕的了(DP,二项式反演)
题目链接: 洛谷 BZOJ 题目大意:有两个长为 $n$ 的序列 $a,b$,问有多少种重排 $b$ 的方式,使得满足 $a_i>b_i$ 的 $i$ 的个数比满足 $a_i<b_i$ 的 ...
- 洛谷P4608 [FJOI2016]所有公共子序列问题 【序列自动机 + dp + 高精】
题目链接 洛谷P4608 题解 建个序列自动机后 第一问暴搜 第二问dp + 高精 设\(f[i][j]\)为两个序列自动机分别走到\(i\)和\(j\)节点的方案数,答案就是\(f[0][0]\) ...
- 【题解】洛谷P3166 [CQOI2014] 数三角形(组合+枚举)
洛谷P3166:https://www.luogu.org/problemnew/show/P3166 思路 用组合数求出所有的3个点组合(包含不合法的) 把横竖的3个点共线的去掉 把斜的3个点共线的 ...
- 【洛谷3648/BZOJ3675】[APIO2014]序列分割(斜率优化DP)
题目: 洛谷3648 注:这道题洛谷3648有SPJ,要求输出方案.BZOJ3675数据组数较多但不要求输出方案. 分析: 这可能是我第三次重学斜率优化了--好菜啊 这道题首先一看就是个DP.稍微推一 ...
- 洛谷P1879 [USACO06NOV]玉米田Corn Fields(状压dp)
洛谷P1879 [USACO06NOV]玉米田Corn Fields \(f[i][j]\) 表示前 \(i\) 行且第 \(i\) 行状态为 \(j\) 的方案总数.\(j\) 的大小为 \(0 \ ...
随机推荐
- CentOS上使用sendmail发送邮件
设置方法 set from=fromUser@domain.com smtp=smtp.domain.com set smtp-auth-user=username smtp-auth-passwor ...
- app下载——js设备判断
摘自:今日头条<!doctype html> <html lang="en"> <head> <meta charset="UT ...
- spring mvc:常用标签库(文本框,密码框,文本域,复选框,单选按钮,下拉框隐藏于,上传文件等)
在jsp页面需要引入:<%@taglib uri="http://www.springframework.org/tags/form" prefix="form&q ...
- ubuntu14.04搭建Hadoop2.9.0集群(分布式)环境
本文进行操作的虚拟机是在伪分布式配置的基础上进行的,具体配置本文不再赘述,请参考本人博文:ubuntu14.04搭建Hadoop2.9.0伪分布式环境 本文主要参考 给力星的博文——Hadoop集群安 ...
- poj3311 状压dp+floyd
先floyd预处理一遍dis,枚举所有状态,dp[ i ] [ j ]表示 以 j 为终点的状态 i 使用最小的时间 #include<map> #include<set> ...
- C++程序设计之提高效率
设计C++程序时,总结起来可以从如下几点提高效率: 1.并发 2.异步 3.缓存
- S5PV210启动过程详解1
内存: SRAM 静态内存 特点就是容量小.价格高.优点是不需要软件初始化直接上电就能用 DRAM 动态内存 特点就是容量大.价格低.缺点就是上电后不能直接使用,需要软件初始化后才可 ...
- 内存保护机制及绕过方案——通过覆盖SEH异常处理函数绕过/GS机制
通过SEH链绕过GS保护机制 ⑴. 原理分析: i.异常处理结构(SEH)处理流程如下: SEH是基于线程的,每一个线程都有一个独立的SEH处理结果,在线程信息块中的第一个结构指向线程的异常列表,F ...
- a, b交换与比较问题
1. 求a, b中较大的数,不使用if.?.switch等判断语句. 答案: 另一种思路是求两者的差,然后通过位运算判断差值的正负,不过个人觉得还是第一种各位简洁优雅. 2. 交换a, b的值,要求不 ...
- 基于Python实现的四则运算生成程序
Github项目地址:传送门 小组成员:黄晓彬(代码实现) 黄钰城(代码审查) 需求: 1. 使用 -n 参数控制生成题目的个数. 2. 使用 -r 参数控制题目中数值(自然数.真分数和真分数分母)的 ...